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Abstract001

Understanding how opinions on different is-002
sues evolve together is essential for modeling003
collective intelligence, yet this remains under-004
explored due to the absence of standardized005
benchmarks. We introduce the concept of an006
opinion graph, where nodes represent social007
opinions on real-world events (e.g., presidential008
elections, stock predictions) and edges capture009
pairwise relationships between them. Building010
on this, we present OPINIONBENCH, a new011
benchmark designed to evaluate whether large012
language models (LLMs) can uncover the hid-013
den structure within evolving social opinions.014
Constructed from Polymarket prediction mar-015
kets, OPINIONBENCH labels event pairs using016
time-series co-movement, semantic similarity,017
and metadata, followed by human validation.018
Experiments show that (1) LLMs consistently019
outperform baselines in identifying opinion cor-020
relations across domains, and (2) LLMs can021
infer the underlying graph structure through022
edge prediction. OPINIONBENCH provides a023
challenging testbed for assessing LLMs’ ability024
to capture complex patterns of social opinion025
co-evolution.026

1 Introduction027

Social opinions represent an individual’s subjective028

perspective about uncertain future events—for ex-029

ample, presidential election outcomes, economic030

trends, or technological breakthroughs. Each per-031

son holds a wide range of such opinions shaped032

by their education, experiences, and social con-033

text. These opinions encode people’s internal be-034

liefs and expectations about how the world will035

unfold and serve as the building blocks of collec-036

tive reasoning and societal decision-making. Social037

opinions exhibit two key structural features: (1)038

Correlation – Social opinions are not formed or039

updated in isolation. Multiple opinions are often040

highly correlated and can shift together when new041

information emerges. For example, a major poll042

Figure 1: An example of the opinion graph. In the
opinion graph, each node represents a social opinion
(data collected from PolyMarket), and edges denote
highly possible reasoning rationale between two social
opinions (data constructed with feature design and ver-
ified by humans). Similar social opinions are closely
correlated with each other and form a graph structure.
When the news appears, multiple social opinions in the
graph would co-evolve accordingly.

showing a surge in support for Donald Trump may 043

simultaneously update beliefs about “Will Trump 044

win the 2024 election?” and “Will Republicans 045

control the Senate?”, as the two events are tightly 046

connected. Likewise, an unexpected Federal Re- 047

serve policy announcement can jointly influence 048

opinions about interest rates and Bitcoin prices, re- 049

flecting shared macroeconomic sentiment (Li et al., 050

2024; Lee et al., 2025; Radivojevic et al., 2024). 051

(2) Transductivity – Beyond pairwise edge rela- 052

tionships, if an opinion A is related to B, and B 053

to C, individuals may implicitly associate A with 054

C. Such multi-hop dependencies allow information 055

or belief changes to propagate indirectly across 056

cross-domain opinions (Zhu et al., 2003). 057

These properties make it natural to represent so- 058

cial opinions using an opinion graph. In this graph, 059
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each node corresponds to a specific social opinion060

toward a real-world event, and each edge represents061

a relationship between two opinions, such as tem-062

poral co-movement, semantic similarity, or causal063

alignment(Kazemi et al., 2020). Because opin-064

ions are often correlated and exhibit transductive065

dependencies, the resulting graph naturally con-066

tains clusters and higher-order structures(Fortunato,067

2010), where groups of related opinions cohere068

into tightly connected subgraphs. This graph-based069

formulation for social opinions provides a princi-070

pled way to model how opinions interact locally071

while also capturing how information can propa-072

gate globally through complex multi-hop connec-073

tions(Hegselmann and Krause, 2002).074

Identifying and predicting these latent structures075

within social opinions is crucial for understand-076

ing collective dynamics and forecasting societal077

change. Structural patterns reveal how shocks can078

propagate through interconnected opinions, poten-079

tially amplifying into large-scale shifts—a “but-080

terfly effect” at the level of public belief. Map-081

ping these structures enables applications such as082

detecting emerging narratives, anticipating coordi-083

nated opinion shifts during crises, modeling sys-084

temic financial or political risks, and improving the085

interpretability of large language models analyz-086

ing social behavior (Kolajo et al., 2022; Minnema087

et al., 2023; Glandt et al., 2021; Wang et al., 2024;088

Cann et al., 2023; Deng et al., 2021; Peng et al.,089

2021). This raises a central research question: Can090

we leverage LLMs to scalably discover the hidden091

structure inside a large number of social opinions?092

Addressing this question would open up new op-093

portunities for analyzing collective reasoning at094

unprecedented scale and granularity.095

To address this question, we first collect high-096

quality opinion graphs from SWM (Anonymous,097

2025), a dataset compiled from Polymarket1 , a098

decentralized forecasting platform. Each node cor-099

responds to a specific social opinion toward a real-100

world event, and each edge is labeled based on a101

combination of time-series co-movement and se-102

mantic similarity, with labels generated automati-103

cally and validated against human annotations to104

ensure reliability. We then apply LLMs to perform105

pairwise edge prediction, enabling us to reconstruct106

the entire opinion graph from local edge-level infer-107

ences and assess whether models can capture both108

local correlations and global structural patterns.109

1https://polymarket.com/

Our findings reveal two conclusions: (1) LLMs 110

can accurately predict edges in the opinion graph, 111

consistently outperforming heuristic and neural 112

baselines. For example, GPT-4o achieves QWK 113

scores above 0.52 on Cryptocurrency domain, sig- 114

nificantly surpassing all heuristic methods. (2) 115

Beyond local edges, LLMs can also recover the 116

global structure of the opinion graph: the predicted 117

graphs exhibit clustering patterns and structural 118

alignments that closely match the ground truth, in- 119

dicating that LLMs implicitly capture transductive 120

and higher-order regularities in social opinions. 121

2 Related Work 122

Social opinion dynamics. Understanding the dy- 123

namics of social opinions associated with real- 124

world events, such as co-occurrence, semantic rele- 125

vance, or implicit causal links, is fundamental to un- 126

derstanding social dynamics. Cataldi et al. (2010) 127

propose a co-occurrence graph to detect tweet 128

topics. The Whatsup framework (Hettiarachchi 129

et al., 2023) resolves co-occurring events using self- 130

learned word embeddings. TimeBank (Gast et al., 131

2016) and MATRES (Ning et al., 2018) provide 132

structured datasets for temporal and causal relation 133

extraction. Zhou et al. (2021) introduces a BERT- 134

based model for reasoning over event correlations. 135

In the financial setting, MARKETGPT (Wheeler 136

and Varner, 2024) and PLUTUS (Xu et al., 2024) 137

develop pretrained models for market social opin- 138

ion understanding. However, many of these studies 139

rely on synthetic setups or structured event rep- 140

resentations, limiting their applicability to noisy, 141

ambiguous real-world social opinions. Our work 142

differs by introducing a realistic evaluation task 143

constructed from real-world market data, enabling 144

systematic measurement of LLMs’ ability to iden- 145

tify social opinion correlations under temporal un- 146

certainty and semantic sparsity. 147

Social reasoning. Prior work uses the term “so- 148

cial reasoning” to refer to tasks like understanding 149

social norms, commonsense interactions, or mod- 150

eling human mental states. For example, SocKET 151

benchmarks LLMs on social-concept understand- 152

ing and moral expectations (Choi et al., 2023), 153

while Gandhi & colleagues study mental-state rea- 154

soning for theory-of-mind modeling (Gandhi et al., 155

2024). Other work evaluates LLMs’ understand- 156

ing of social norms in large-scale benchmark set- 157

tings, such as the Social Norm dataset (Yuan et al., 158

2024) and the NormAd cultural adaptability frame- 159
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work (Rao et al., 2025). Prior work often defines160

social reasoning through individual or small-group161

cognition, focusing on human-centric scripts or162

moral norms. In contrast, we define it as identi-163

fying meaningful connections between real-world164

social opinions, capturing co-occurrence, semantic165

relevance, or implicit causality in different domains.166

Our task centers on reasoning over collective dy-167

namics using noisy, unstructured signals (e.g., pre-168

diction markets), shifting focus from interpersonal169

commonsense to event-level inference relevant for170

social science and forecasting.171

3 Preliminary172

Definition of opinion graphs. We represent the173

relationships among social opinions using an opin-174

ion graph G = (V, E), where V is the set of nodes175

corresponding to individual social opinions, and176

E is the set of edges capturing meaningful ratio-177

nales between pairs of opinions. This graph pro-178

vides a unified representation of how collective179

expectations about different real-world events are180

connected through semantic, temporal, or causal181

dependencies.182

Social opinions as nodes. Each node v ∈ V183

represents a social opinion toward a real-world184

event e ∈ E . Formally, a node is defined as185

ve :=
(
qe, {pet}

Te
t=1

)
, where qe is the natural lan-186

guage description of the event, and pet is the time se-187

ries of daily market-implied probabilities extracted188

from Polymarket. This time series reflects the189

evolving collective belief about the event, while190

qe provides semantic context. In our framework,191

only the textual descriptions are used for model192

inference, whereas temporal signals are utilized193

for constructing and validating the ground-truth194

correlations.195

Reasoning rationales as edges. Each edge196

(vi, vj) ∈ E represents a reasoning rationale that197

links two social opinions. A rationale provides a198

textual explanation describing why the two opin-199

ions are related, such as shared semantic content200

or correlated temporal dynamics. In other words,201

edges encode interpretable relational explanations202

that justify why two opinions should be connected.203

Because social opinions are often correlated and ex-204

hibit transductive dependencies, the resulting opin-205

ion graph naturally forms clusters and higher-order206

structures.207

Opinion structure prediction task. The task we208

defined on the opinion graph aims to reconstruct209

the structure of the underlying opinion graph G 210

from observed social opinions V by evaluating the 211

plausibility of edges between node pairs. Formally, 212

given a set of candidate node pairs P ⊆ V × V , 213

the goal is to learn a scoring function s : P → R, 214

where s(vi, vj) quantifies the predicted rationale 215

strength between two social opinions vi and vj . 216

High scores correspond to pairs that are strongly 217

connected through semantic, temporal, or causal 218

reasoning, while low scores indicate weak or spuri- 219

ous associations. By applying a threshold τ to the 220

predicted scores, 221

Ê = {(vi, vj) ∈ P | s(vi, vj) ≥ τ}, (1) 222

We aim to obtain a filtered set of edges that define 223

the predicted opinion graph Ĝ = (V, Ê) that should 224

be as similar as possible with the ground-truth one. 225

4 Constructing the Opinion Graph 226

To benchmark the social opinion correlation task, 227

we construct a dataset based on SWM (Anonymous, 228

2025), derived from Polymarket. In this section, 229

we first explain how social opinion pairs are se- 230

lected, then describe our procedure for collecting 231

ground-truth relationship labels. 232

4.1 Social Opinion Node Collection 233

Not all markets offer informative or reliable signals 234

for social opinion reasoning. To ensure that the 235

included events reflect collective crowd social opin- 236

ions rather than noise, we apply two filters: one 237

based on trading volume, the other on volatility of 238

social opinion movement. 239

Volume filter. Markets with very low trading vol- 240

ume are often driven by isolated trades and do 241

not reflect meaningful aggregation of public social 242

opinion. We remove the bottom 25% of events by 243

trading volume within each domain. This helps ex- 244

clude illiquid or inactive markets where probability 245

shifts are unreliable. 246

Volatility filter. We require the event to have a suf- 247

ficient probability of movement. A flat probability 248

series provides little statistical signal. By impos- 249

ing a minimum volatility threshold, we ensure that 250

the probability series contains enough variation to 251

make the correlation test meaningful. Details are 252

available in Appendix §C.1. 253

4.2 Reasoning Rationale Edge Collection 254

To construct ground-truth edges for the opinion 255

graph, we adopt a hybrid scoring framework that 256
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Figure 2: Overview of the OPINIONBENCH pipeline. (a) Social opinion node collection from Polymarket with
market filtering for reliability. (b) Reasoning rationale edge collection quantifies multi-level connections (5 levels)
via semantic, temporal, and tag similarities, verified by human annotation. (c) Opinion structure prediction evaluation
measures models’ ability to capture opinion relevance across domains, reasoning types, temporal generalization,
and network structure.

integrates multiple complementary signals. This257

approach captures both semantic and temporal258

aspects of social opinion relationships, allowing259

us to go beyond surface similarity and identify260

deeper correlations between event pairs. For each261

pair (A,B), we compute four interpretable feature262

scores, s1 through s4, and combine them into a263

single composite relevance score.264

Feature design. The four features capture dis-265

tinct yet complementary aspects of social opinion266

relationships. (1) Change-point synchrony s1 de-267

tects statistically significant shifts in each event’s268

social opinion trajectory and measures how fre-269

quently these shifts occur close together in time,270

capturing coordinated changes in collective expec-271

tations. (2) Tag Jaccard similarity s2 compares272

Polymarket metadata tags, identifying topical over-273

lap and shared discourse contexts. (3) Minimum274

time gap s3 measures how closely in time the opin-275

ion shifts of two events occur, providing a soft mea-276

sure of temporal proximity. (4) Textual similarity277

s4 computes embedding-based semantic similar-278

ity between event descriptions, capturing lexical279

and conceptual relatedness beyond metadata. Full280

details of these feature definitions are provided in281

Appendix §C.2.282

Edge label construction. The four feature scores283

are linearly combined into a single heuristic cor-284

relation score S(A,B) =
∑4

i=1 γisi(A,B). The 285

resulting scores are discretized into five ordinal 286

levels (very weak, weak, medium, strong, very 287

strong), which serve as ground-truth edge labels 288

in our prediction task. By integrating heteroge- 289

neous information—temporal dynamics, topical 290

metadata, and textual semantics—this framework 291

produces high-quality, interpretable rationales for 292

edge construction in the opinion graph. We also col- 293

lect text-based rationale with state-of-the-art LLMs 294

(GPT-4o) as part of the edge attribute. 295

Human verification. To assess the quality of the 296

heuristic labels, we conduct a human annotation 297

study on a representative subset of 200 event pairs, 298

sampled uniformly across the five correlation lev- 299

els. Three annotators independently rated each pair 300

based on textual semantics and related news, with- 301

out access to the underlying time series or model 302

predictions. Inter-annotator agreement was strong, 303

with pairwise Pearson correlations ranging from 304

0.739 to 0.840 and an intraclass correlation (ICC) 305

of 0.777. Moreover, the aggregated human judg- 306

ments were well aligned with the heuristic scores, 307

yielding a Pearson correlation of 0.697. These re- 308

sults confirm that the scoring framework reflects 309

intuitive assessments of social opinion correlation. 310

Full details of the protocol and annotation exam- 311

ples are provided in Appendix §I. 312
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Figure 3: Performance on opinion graph edge scoring across four domains: Politics, Crypto, Sports, and
Election. Only the strongest baseline is included for comparison. Each heatmap shows model performance
across five metrics: MSE, MAE (lower is better before negation), and Accuracy, Macro-F1, QWK (higher is better).
To make metrics comparable, error metrics are first negated so that higher values indicate better performance,
and then all values are min–max normalized within each metric and dataset. Models are sorted by their average
normalized score across all datasets. Higher values indicate better normalized performance.

5 Predicting the Opinion Graph313

We use LLMs to perform opinion graph discov-314

ery by jointly predicting a rationale and a score315

for each candidate edge. Given a pair of social316

opinions (vi, vj) ∈ P , represented by their event317

descriptions and opinion trajectories, the model is318

prompted to reason about their relationship and319

generate two outputs simultaneously: a textual ex-320

planation describing why the two opinions may be321

correlated, and a scalar score indicating the pre-322

dicted strength of this relationship. Formally, for323

each node pair (vi, vj), the LLM implements a324

mapping ΦLLM : P → R × R, where R denotes325

the space of textual rationales. The output326

ΦLLM(vi, vj) =
(
ri,j , , si,j

)
(2)327

consists of a text-based rationale ri,j ∈ R explain-328

ing the potential connection between vi and vj , and329

a score si,j ∈ R reflecting the predicted strength of330

their relationship.331

The predicted opinion graph is then recon-332

structed by applying a threshold τ to the set of333

predicted scores. Specifically, we retain edges with334

si,j ≥ τ to form the edge set following Eq. 1,335

which defines the predicted graph Ĝ = (V, ÊG).336

The generated rationales provide interpretable jus- 337

tifications for each predicted edge, while the scores 338

enable scalable graph recovery through pairwise 339

evaluation. This joint rationale–score prediction 340

framework allows LLMs to explicitly reason about 341

social opinion relationships. 342

6 Experimental Settings 343

Baselines. We implement several heuristic base- 344

lines that rely on simple similarity or overlap met- 345

rics computed from event metadata. We also 346

include a neural baseline using a cross-encoder 347

model 2 (nli-deberta-v3-base), which com- 348

putes a scalar relevance score from the concate- 349

nated text of the two event descriptions. These con- 350

tinuous scores are then discretized into the same 351

five relevance bins for evaluation. 352

Prompting-based LLMs. We evaluate models 353

including GPT model family (Hurst et al., 2024), 354

Qwen2 model family (Team et al., 2024), LLaMA 355

model familty (Touvron et al., 2023) and DeepSeek- 356

R1 (Guo et al., 2025) using a rationale-based clas- 357

sification setup. Given two social opinion titles and 358

2https://huggingface.co/cross-encoder/
nli-deberta-v3-base
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descriptions, the LLM first generates a structured359

rationale explaining links between events, then se-360

lects relevance levels. For comparison, we also361

include a variant where models directly predict the362

relevance label without explicit reasoning.363

Edge-level evaluation metrics. We evaluate per-364

formance at both the edge and graph levels. For365

edge-level metrics, we include MSE, MAE, Accu-366

racy, Macro-F1, and Quadratic Weighted Kappa367

(QWK). All of them are aimed for evaluating the368

classification performance. Typically, QWK is a369

classical ranking correlation metric computed as370

QWK = 1−
∑

i,j WijOij∑
i,j WijEij

, (3)371

where O and E are the observed and expected rat-372

ing matrices, and W is the quadratic weight matrix.373

Graph-level evaluation metrics. Graph-level met-374

rics include: (1) Largest Connected Component375

ratio (LCC), defined as LCC = |Vmax|
|V | ; (2) Clus-376

tering coefficient, C = 1
n

∑
i

2Ti
ki(ki−1) , where Ti377

is the number of triangles through node i; (3)378

Strength correlation, ρ = corr
(
sGT
i , sPred

i

)
, where379

si is the weighted degree; (4) Transitivity, Trans =380
3×# triangles

# connected triples . These metrics jointly assess the381

global structural fidelity.382

7 Experimental Results383

LLMs generally achieve strong edge predic-384

tion performance across domains. In Fig-385

ure 3, we evaluate model performance across386

four domains—Politics, Election, Crypto, and387

Sports—using both classification (Accuracy, F1,388

QWK) and regression (MSE, MAE) metrics. Over-389

all, GPT-4o + Chain-of-Thought (Wei et al., 2022)390

achieves the strongest and most stable results, out-391

performing smaller variants (e.g., GPT-o3-mini)392

and competitive open-source baselines (e.g., Meta-393

Llama-3-70B, Qwen2-72B) in most settings. While394

minor domain-specific variations exist, the trend395

highlights that LLMs can effectively infer event396

relationships from textual descriptions alone, with-397

out relying on metadata. Heuristic baselines based398

on time overlap perform markedly worse, further399

emphasizing the advantage of language-based rea-400

soning.401

Rationale generation helps most in domains re-402

quiring complex reasoning. CoT prompting pro-403

vides the greatest benefit in domains like Politics404

Domain LCC Clustering Corr. Trans.

Politics 92.6→82.8 0.088→0.087 0.983 78.0%***

Election 98.5→99.3 0.257→0.276 0.991 90.8%***

Crypto 99.4→97.8 0.131→0.104 0.970 87.8%***

Sports 91.6→45.0 0.077→0.034 0.954 90.0%***

Table 1: LLM-based predictions preserve network
structure. LCC represents the percentage of the largest
connected component ratio. Clustering represents the
local cohesion. Corr. represents edge-weight alignment.
Trans. represents transitivity. X → Y represents the
ground-truth one → the predicted one. A small differ-
ence between X and Y indicates the high fidelity for
prediction. *** indicates p < 0.05.

and Election. In these settings, models like GPT-4o- 405

CoT and GPT-o3-mini-CoT achieve notable gains 406

in regression accuracy and ranking consistency, 407

reflecting their ability to uncover indirect depen- 408

dencies between events. However, these benefits 409

are domain-specific: CoT improves calibration but 410

not classification metrics in Politics, and primar- 411

ily boosts regression in Election. In contrast, in 412

Crypto and Sports—where relationships are largely 413

surface-level—CoT often introduces unnecessary 414

noise, leading to drops in Accuracy. Overall, ratio- 415

nale generation enhances performance when rea- 416

soning complexity is high, but can be detrimental 417

when simple textual cues suffice. 418

Ground-truth opinion graphs show clear higher- 419

order structure. Although the benchmark labels 420

pairwise correlations, these links form cohesive 421

multi-event networks. As shown in Table 1, across 422

all domains, 92–99% of events belong to a single 423

connected component. Clustering coefficients are 424

12–29× higher than random (Politics: 0.088 vs. 425

0.003; Election: 0.257 vs. 0.012), revealing abun- 426

dant triangular motifs. Louvain detection yields 427

modularity of 0.50–0.77, well above random parti- 428

tions. These results show that pairwise correlations 429

naturally organize into structured, high-order opin- 430

ion graphs, allowing pairwise evaluation to probe 431

broader belief dynamics. 432

LLM-predicted graphs preserve key structural 433

patterns. We then assess whether model-predicted 434

graphs retain the structural properties of ground 435

truth. As shown in Table 1, in Election and Crypto, 436

connectivity and clustering closely match ground 437

truth (<2% difference), with identical modularity 438

in Crypto (0.578). Strength correlations (weighted 439

degrees) exceed 0.95 across all domains. Transi- 440

tivity, reflecting logical consistency, remains high 441

(76–92%) and far above random baselines (≈41%). 442
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Figure 4: Case study for edges between social opinions and the path they form. (a) Pairwise relevance
cases: GPT-4o+CoT explains both simple and complex social opinion pairs. (b) An example social opinion chain
constructed from high-relevance event pairs (score > 0.6), with links inferred by GPT-4o using CoT reasoning.

Politics shows moderate degradation (83% vs. 93%443

GT connectivity), while Sports has lower con-444

nectivity (45%) but exceptionally high transitivity445

(98%), indicating locally consistent yet globally446

fragmented predictions. Overall, LLMs preserve447

network structure in semantically coherent domains448

and maintain local consistency even when global449

alignment weakens.450

8 Case Study451

Beyond statistical evaluation results on edge and452

graph prediction, we conduct microscopic case453

studies to examine how well LLM-based predictors454

reconstruct opinion graphs at two structural levels:455

edges and paths. This hierarchical perspective re-456

veals how LLM-based rationale prediction can be457

used to make local predictions scale into global458

graph structure discovery. Additional examples are459

provided in Appendix §E.460

Edge level: local correlations and reasoning ra-461

tionales. Edges in the opinion graph can be sup-462

ported by either simple or complex reasoning. Fig-463

ure 4(a, left) shows a simple case, where two opin-464

ions share a clear topical overlap (e.g., both concern465

cryptocurrency but focus on different coins). The466

model’s rationale is straightforward—it notes that467

they “share a common thematic context.” In con-468

trast, Figure 4(a, right) presents a complex case,469

where the connection depends on multi-step tem-470

poral or causal reasoning. For example, a Federal471

Reserve interest rate hike can tighten monetary con-472

ditions and redirect capital away from speculative473

assets like Ethereum, linking two seemingly distant474

opinions. Together, these simple topical links and475

complex causal chains form the backbone of the476

opinion graph structure. 477

Path level: chaining social opinions and the but- 478

terfly effect. Building on both simple and complex 479

edges, Figure 4(b) shows how related opinions can 480

form extended chains (paths in the opinion graph) 481

through shared entities or causal dependencies. For 482

example, a sequence linking Trump’s campaign 483

statements to rally participation and ultimately to 484

electoral outcomes illustrates how opinions evolve 485

across interconnected contexts. Simple edges link 486

central events to related ones, while complex edges 487

propagate these connections across domains, cre- 488

ating reasoning paths that reflect the butterfly ef- 489

fect—where local signals spread through institu- 490

tional or topical structures to shape broader expec- 491

tations. These case studies demonstrate that LLMs 492

can uncover such latent chains and generate coher- 493

ent, evolving rationales that connect multiple social 494

opinions, ultimately revealing the hidden structure 495

underlying collective beliefs. 496

9 Discussion 497

To understand when and why LLMs succeed at un- 498

covering social opinion structures, we focus on four 499

key factors. We examine how performance varies 500

across domains with different semantic structures 501

(RQ1) and investigate the reasoning strategies mod- 502

els use to make predictions (RQ2). We then assess 503

whether scaling and fine-tuning smaller models 504

can improve efficiency without sacrificing accu- 505

racy (RQ3), and evaluate the role of knowledge 506

recency in generalizing to unseen events (RQ4). 507

RQ1: What domain are LLMs good at? 508

LLMs perform well in semantically dense domains 509

but struggle in sparse ones. As shown in Figure 3, 510
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model performance varies by domain structure. In511

Crypto and Election, where events share entities,512

timelines, or institutions, models achieve stronger513

results. Even simple heuristics perform well due514

to the rich semantic context. In contrast, Sports515

events are often isolated and actor-specific, leading516

to the weakest performance. Political events fall517

in between, requiring both structural and contex-518

tual reasoning. These patterns suggest that LLMs519

are most effective in domains with coherent and520

recurring semantics.521

RQ2: How do LLMs reason for prediction?522

To better understand what types of relationships523

LLMs rely on when judging social opinion corre-524

lation, we analyze their CoT outputs and catego-525

rize the reasoning basis. As shown in Figure 5,526

only a small fraction of cases reflect explicit log-527

ical connections: approximately 8.7% in politics528

and less than 5.7% in sports. In contrast, a large529

proportion of predictions fall under confounding530

relationships (e.g., shared context or common back-531

ground factors), accounting for 55% in politics and532

32% in sports. These results suggest that LLMs do533

not primarily rely on formal logic or direct causal-534

ity. Instead, they often identify perceived connec-535

tions through narrative, intuition, or shared framing.536

This supports our interpretation that the LLM cap-537

tures relatedness rather than causal inference.538

RQ3: Does training on LLMs improve539

performance for edge prediction?540

As shown in Figure 3, fine-tuning significantly541

boosts the performance of smaller models for opin-542

ion graph prediction. We fine-tuned Qwen1.5-4B543

on 500 social opinion pairs and evaluated it on the544

same test set. The fine-tuned model shows substan-545

tial gains over its zero-shot version and becomes546

competitive with much larger models, achieving547

performance comparable to Meta-Llama3-70B in548

certain domains. These results suggest that smaller,549

specialized models can serve as efficient and effec-550

tive alternatives to large general-purpose LLMs.551

RQ4: Does the knowledge cutoff matter?552

We investigate whether LLMs rely on factual553

knowledge from pretraining or can generalize to554

unseen events. To this end, we compare model555

performance on event pairs occurring before and556

after the model’s knowledge cutoff. As shown in557

Figure 2, all evaluated models exhibit clear perfor-558

mance degradation on post-cutoff examples in the559

election domain, measured by percentage change560

in MSE. For instance, GPT-4o shows a substantial561

politics election sports crypto
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Figure 5: Distribution of reasoning types across do-
mains. Each edge was labeled based on the explanation
produced by the model. A majority of predictions are
based on shared context (confounding) or loose narra-
tive links (CoT basis), while only a small portion exhibit
explicit logical or causal reasoning. This suggests the
model is primarily identifying correlations rather than
inferring direct causal links.

Model Before↓ After↓ ∆ (%)

Heuristic (Time-OL) 0.0639 – –
LLaMA 0.0556 0.0656 +18.0
DeepSeek v3 0.0318 0.0348 +9.4
GPT-4o 0.0167 0.0252 +50.9

Table 2: Results on temporal generalization. We
report MSE before/after the knowledge cutoff (Elec-
tion). All models exhibit worse MSE performance on
post-cutoff event pairs, highlighting challenges in tem-
poral generalization. GPT-4o shows the highest increase.
Time-OL represents time-overlapping.

drop of over 50%, while DeepSeek-v3 and LLaMA- 562

3 also experience notable declines. These results 563

suggest that while LLMs may generalize to unseen 564

patterns to some extent, their ability to capture 565

social opinion correlation often depends on up-to- 566

date world knowledge learned during pretraining. 567

10 Conclusion 568

In summary, social opinions form richly structured 569

networks and make graph-based representations 570

a natural framework for understanding collective 571

belief dynamics. By leveraging high-quality opin- 572

ion graphs and applying LLMs to edge prediction 573

tasks, we show that LLMs not only excel at predict- 574

ing pairwise relations but also recover higher-order 575

structural patterns that closely mirror ground-truth 576

networks. These findings demonstrate that LLMs 577

implicitly capture the latent organization of social 578

opinions, enabling scalable analysis of emerging 579

belief dynamics. Looking ahead, our framework 580

can motivate future work for better studies on opin- 581

ion dynamics and social simulation. 582
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Limitations583

Heuristic-score-based ground truth Our584

ground-truth labels are derived from a weighted585

heuristic score S(A,B) that combines temporal586

synchrony, textual similarity and time alignment587

(see Section §4.2). Although this method improves588

over pure correlation-based approaches (e.g.589

Kendall’s τ ), it can still assign high scores to590

spurious pairs, for example events with spikes591

in coincident volatility or shared metadata but592

without substantive connection. Such false593

positives can penalize models that correctly reject594

these superficial links, limiting the fidelity of the595

supervision signal.596

Platform and domain bias. Polymarket does not597

list every real-world event - in many domains, the598

coverage is patchy.599

Pairwise relation assumption. Our framework600

estimates the strength of social opinion correla-601

tions using pairwise relationships between events.602

While this design enables interpretable and scalable603

analysis, it does not explicitly capture higher-order604

dependencies among multiple events. Future work605

could explore multi-event or graph-based inference606

methods to model collective reasoning patterns that607

go beyond pairwise interactions.608

Temporal overlap assumption. Our approach609

focuses on social opinion pairs with overlapping610

active periods to ensure that the measured time-611

series correlations capture dynamic co-movement612

as traders respond to new information. While this613

design helps reduce noise in estimating relevance,614

it also limits the benchmark’s ability to evaluate615

delayed or indirect causal links that might manifest616

outside of these overlapping windows. Future work617

could explore more advanced temporal modeling618

strategies, such as lag-aware correlation measures619

or causal inference techniques to better capture620

these complex, cross-temporal relationships.621

Ethical Statement622

This work analyzes public event data from Poly-623

market, a prediction market platform that provides624

open-access market-level data without any user-625

identifiable information. We do not collect or pro-626

cess individual-level data, and all analysis is con-627

ducted at the event level. Thus, privacy concerns628

are minimal.629

Our evaluation framework involves using large630

language models (LLMs) to assess the relevance be-631

tween social events. These models, while powerful, 632

may exhibit unintended biases, particularly in po- 633

litically sensitive or socially charged domains. We 634

caution against using these models as authoritative 635

predictors or decision-making tools in high-stakes 636

environments. 637

Additionally, while our work aims to understand 638

event relationships, it does not attempt to fore- 639

cast outcomes or provide trading recommendations. 640

The models are evaluated solely on their reason- 641

ing and ranking capability and should not be inter- 642

preted as reliable financial or political forecasting 643

instruments. 644

Finally, while our method is training-free, the 645

evaluation dataset itself may reflect biases from 646

Polymarket’s coverage, which is shaped by com- 647

munity interest and market dynamics. As a result, 648

certain domains, such as Sports or Politics, may 649

be overrepresented, potentially influencing model 650

predictions or evaluation trends. We encourage fu- 651

ture work to broaden coverage to include a more 652

balanced set of social domains. 653
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A Artifact Details825

A.1 Artifact Information826

This artifact contains all components required to827

reproduce the results in our study of social opin-828

ion correlation reasoning in large language models829

(LLMs). It includes:830

• Code: A complete implementation of the pair-831

wise social opinion correlation scoring pipeline,832

including preprocessing, model inference (with833

and without CoT prompting), and evaluation met-834

rics.835

• Data:836

– Manually annotated development and test837

sets across four domains: Politics, Election,838

Cryptocurrency, and Sports.839

– Rubric definitions used to guide annotation.840

– Annotation metadata and inter-annotator841

agreement statistics.842

• Models: Inference scripts for querying multiple843

foundation models via standard APIs. Specifi-844

cally, GPT-4o and GPT-o3-mini were accessed845

through the official OpenAI API, while Meta-846

Llama-3, DeepSeek-V3, and Qwen2 series were847

accessed via the Together.ai inference platform.848

All calls are wrapped with reproducible config-849

urations, and API versions are specified to en-850

sure consistent results across runs. For models851

supporting CoT prompting, the corresponding852

CoT-enabled variants are also included.853

• Evaluation: Scripts to compute both regression854

and classification metrics, including MSE, MAE,855

Accuracy, Macro-F1, QWK. Also included are856

scripts to produce the figures and tables in the857

main paper and appendix.858

• Case Study Tools: Utilities for constructing so-859

cial opinion chains, visualizing social opinion860

graphs, and analyzing CoT rationales.861

The artifact is designed for easy replication and862

modification. Each script is documented with usage863

instructions, input formats, and expected outputs.864

Running the default configuration will reproduce865

all key results from the paper. At the time of sub-866

mission, these materials are under preparation for867

release. We will make the code and data available868

upon publication.869

A.2 Artifact License870

All components of our artifact are intended for871

research use and will be released under open-source872

or permissive licenses upon publication.873

• Codebase: The full codebase, including prepro- 874

cessing, inference, and evaluation scripts, will be 875

released under the MIT License. 876

• Annotated Data: The manually labeled develop- 877

ment and test sets, along with rubric definitions 878

and annotation metadata, are original contribu- 879

tions of this work. These datasets will be released 880

under the CC BY 4.0 License, permitting reuse 881

with attribution for research and non-commercial 882

purposes. 883

– Codebase: The full codebase, including pre- 884

processing, inference, and evaluation scripts, 885

will be released under the MIT License. 886

– Annotated Data: The manually labeled devel- 887

opment and test sets, along with rubric defi- 888

nitions and annotation metadata, are original 889

contributions of this work. These datasets will 890

be released under the CC BY 4.0 License, per- 891

mitting reuse with attribution for research and 892

non-commercial purposes. 893

– Model Usage: Our study relies on querying 894

several pretrained language models. We use 895

GPT-4o and GPT-o3-mini via the OpenAI 896

API,3 which are proprietary models licensed 897

by OpenAI. We also evaluate open-weight 898

models including Meta-Llama-3 70B (gra, 899

2024), DeepSeek-V3 (dee, 2025b), DeepSeek- 900

R1 (dee, 2025a), and Qwen2 (yan, 2024), ac- 901

cessed through the Together.ai inference plat- 902

form, all released under Apache 2.0 or simi- 903

lar permissive licenses. In addition, we fine- 904

tune Qwen1.5-4B (Team, 2024) (LoRA vari- 905

ant) using the Hugging Face Transformers li- 906

brary,4 which is an open-weight model under 907

the Apache 2.0 License. The fine-tuning was 908

performed on a single NVIDIA A100 GPU for 909

approximately 10 minutes, with no large-scale 910

computational resources required. For com- 911

parison, we include a cross-encoder baseline 912

using nli-deberta-v3-base5 from Hugging 913

Face, licensed under the MIT License. 914

We respect all license terms associated with the 915

use of these third-party models and APIs. No 916

model weights are redistributed. All data and code 917

will be clearly marked with their respective licenses 918

in the released repository. 919

3https://platform.openai.com/docs/models/
gpt-4o

4https://huggingface.co/Qwen/Qwen1.5-4B
5https://huggingface.co/cross-encoder/

nli-deberta-v3-base
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A.3 Data Usage920

Our dataset includes events across four domains:921

Politics, Election, Cryptocurrency, and Sports. We922

use a subset of Polymarket data curated by prior923

work currently under review (Anonymous, 2025).924

The final dataset will be released under the MIT925

License for academic use.926

• Source and Licensing:927

• Use Consistency: Our data usage is consistent928

with the intended purpose of the source materials,929

which were either licensed for research or cre-930

ated explicitly for this project. No repurposing931

beyond research evaluation has been conducted.932

• Human Annotation: Each social opinion corre-933

lation pair in the development and test sets was934

labeled by multiple annotators using a rubric-935

based scale. Inter-annotator agreement scores are936

included in the Appendix §I to reflect labeling937

quality.938

• Privacy and Safety: The dataset does not con-939

tain any personally identifiable information (PII),940

user metadata, or social media handles. All941

text has been reviewed to exclude offensive con-942

tent, and no inference was made regarding demo-943

graphic or protected attributes.944

• Intended Use: The dataset is intended exclu-945

sively for research on social reasoning, social946

opinion dynamics, and LLM evaluation. It is947

not suitable for deployment in user-facing appli-948

cations or downstream tasks involving sensitive949

decision-making.950

A.4 Data Statistics951

Our benchmark covers four domains: Politics, Elec-952

tion, Cryptocurrency, and Sports.953

The final benchmark includes:954

• Total event pairs: 8,839955

• Label format: Each pair is assigned a con-956

tinuous social opinion correlation score in the957

range [0, 1], reflecting graded relatedness. For958

classification-based analyses, scores are mapped959

to a 5-point ordinal scale (from strongly unrelated960

to strongly related) using predefined thresholds.961

• Label source: The majority of labels were de-962

rived programmatically via rubric-based scoring;963

a small subset was verified by human annotators964

for calibration and quality assurance.965

• Agreement check: For the verified subset, each966

pair was annotated by 3 annotators. The average967

inter-annotator correlation exceeds 0.78, indicat-968

ing strong agreement on the ordinal scale used969

for verification. 970

B Computational Resources. 971

The only locally fine-tuned model was Qwen1.5- 972

4B (LoRA), trained on a single NVIDIA A100 973

GPU (80GB) for approximately 10 minutes, corre- 974

sponding to a total compute budget of ∼0.17 GPU- 975

hours. The LoRA adapters introduce fewer than 1% 976

of the base model’s parameters. All other models 977

were accessed via the OpenAI and Together.ai in- 978

ference APIs, requiring no additional training. All 979

runs were executed deterministically with fixed ran- 980

dom seeds and single-threaded decoding to ensure 981

reproducibility. 982

C Dataset Construction Details 983

C.1 Volatility filter details 984

We include the volatility filter here. Let rt = 985

logit(pt) − logit(pt−1) be logit return, i.e., day- 986

to-day changes in log-odds. Denote by σ
(w)
t the 987

rolling standard deviation of {rτ}tτ=t−w+1 over a 988

window of w days. Let γ be the volatility threshold 989

and α be the required proportion. We retain a base 990

market only if 991

1

T − w + 1

T∑
t=w

1
[
σ
(w)
t ≥ γ

]
≥ α, (4) 992

i.e., at least α fraction of the windows have the 993

standard deviation of the daily logit returns above 994

γ. 995

C.2 Edge construction feature details 996

Feature1: Change-point synchrony. We iden- 997

tify time points where an event’s social opinion 998

trajectory exhibits statistically significant shifts by 999

applying z-score thresholding to the price deltas 1000

in its time series. For each event, we extract a set 1001

of such change points. The synchrony score then 1002

measures the fraction of change points in event A 1003

that align within a short temporal window δ of any 1004

change point in event B. This captures the intuition 1005

that jointly fluctuating social opinions are likely to 1006

be correlated: 1007

s1(A,B) =
1

|TA|
∑
t∈TA

⊮
[
∃ t′ ∈ TB, |t− t′| < δ

]
.

(5) 1008

Feature2: Tag Jaccard similarity. To estimate 1009

topical overlap, we use the Jaccard index over tag 1010
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sets from Polymarket metadata. Each event in-1011

cludes tags that describe its domain or subject mat-1012

ter. A high Jaccard score indicates that two events1013

are framed under similar categories or themes,1014

which may reflect a shared discourse context:1015

s2(A,B) =
|KA ∩ KB|
|KA ∪ KB|

. (6)1016

Feature3: Minimum time gap. We compute the1017

minimum absolute time difference between any1018

change point in event A and any in event B. This1019

measures how closely social opinion shifts in the1020

two events occur in time. We convert this to a soft1021

similarity score using a monotonic inverse transfor-1022

mation:1023

s3(A,B) =
1

1 + min
t∈TA, t′∈TB

|t−t′|
τ

. (7)1024

Feature4: Textual similarity. We embed the text1025

descriptions of events using sentence-transformer1026

models and compute cosine similarity between the1027

resulting embeddings. This feature captures seman-1028

tic proximity at the lexical and conceptual level,1029

and complements the tag-based feature with more1030

nuanced language modeling:1031

s4(A,B) = 1− cos (eA, eB) . (8)1032

Overall. The four feature scores are linearly com-1033

bined into a single heuristic correlation score. The1034

weights are optimized on a development set to1035

best match human relevance judgments. We dis-1036

cretize S(A,B) into five relevance classes: very1037

weak (0.0–0.2), weak (0.2–0.4), medium (0.4–0.6),1038

strong (0.6–0.8), and very strong (0.8–1.0). These1039

bucketed labels serve as groundtruth in evaluation:1040

S(A,B) =

4∑
i=1

wi · si(A,B) (9)1041

where wi is tuned to make the prediction highly1042

aligned with a small set of human annota-1043

tion results. The final normalized weights are:1044

wsync=0.2688, wjacc=0.3652, wtime=0.1228, and1045

wtext=0.2435.1046

D LLM Prompt1047

The prompt of the zero shot and CoT version are1048

in Table 31049

E Case Study Examples 1050

E.1 Simple 1051

These pairs are topically similar but lack direct 1052

causal or temporal connection. 1053

Example 1 Event 1: USDC market cap over $25 1054

billion EOY? 1055

Event 2: Will ETH hit $2,000 by EOY? 1056

Ground Truth: 0.4–0.6 1057

GPT-o3-mini (CoT): 0.2–0.4 1058

GPT-o3-mini (No CoT): 0.4–0.6 1059

CoT: "Both events occur in the cryptocurrency 1060

space, with one focusing on the stablecoin USDC’s 1061

market cap and the other on ETH’s price. They 1062

share a common thematic context but are mea- 1063

suring distinct characteristics of the crypto mar- 1064

ket with minimal direct causal influence between 1065

them." 1066

Example 2 Event 1: Will ETH hit $2,000 by 1067

EOY? 1068

Event 2: Huobi insolvent in 2023? 1069

Ground Truth: 0.4–0.6 1070

GPT-o3-mini (CoT): 0.2–0.4 1071

GPT-o3-mini (No CoT): 0.4–0.6 1072

CoT: "Both events relate to the cryptocurrency in- 1073

dustry. However, while ETH reaching a certain 1074

price is a market performance event, Huobi’s insol- 1075

vency is a corporate financial event. Their connec- 1076

tion is thematic but not directly causal or tempo- 1077

rally linked." 1078

E.2 Complex 1079

These examples involve shared actors, institutional 1080

decisions, or policy-level connections. 1081

Example 3 Event 1: Will SEC delay Bitcoin 1082

ETF decision? 1083

Event 2: Ethereum spot ETF approved by Mar 31? 1084

Ground Truth: 0.6–0.8 1085

GPT-o3-mini (CoT): 0.6–0.8 1086

GPT-o3-mini (No CoT): 0.4–0.6 1087

CoT: "Both events involve SEC decisions regard- 1088

ing cryptocurrency ETFs. They are thematically 1089

linked, as they both pertain to regulatory actions on 1090

crypto investments and have overlapping timelines, 1091

despite focusing on different digital assets (Bitcoin 1092

and Ethereum)." 1093

Example 4 Event 1: Will Haley beat DeSantis 1094

in Iowa? 1095

Event 2: Will Kristi Noem win the U.S. 2024 Re- 1096

publican VP nomination? 1097
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Original Prompt CoT Prompt
You are an expert in interpreting and reasoning about real-world
events, such as those found on prediction markets.
Your task is to read two events and classify how related they are
using exactly one of the label keys below. Base your judgement
on any causal, temporal, or thematic relationship that may exist.

Return only a valid JSON object in the form: {"label":
"0.4-0.6"}. Do not include explanations, formatting, or any
additional text.

Labels (choose one key only):
"0.0-0.2" → Unrelated — No real connection in topic, time,
or influence.
"0.2-0.4"→ Weakly Related — Small thematic overlap, but
no causal or temporal influence.
"0.4-0.6"→ Moderately Related — Events share context or
actors but remain largely independent.
"0.6-0.8" → Strongly Related — One event influences or is
likely affected by the other.
"0.8-1.0" → Highly Related — One event is clearly a
consequence, cause, or restatement of the other.

Event 1
{e1_title}
{e1_desc}

Event 2
{e2_title}
{e2_desc}

Strictly respond with a JSON object like: {"label":
"0.6-0.8"}

You are an expert in interpreting and reasoning about real-world
events, such as those found on prediction markets.
Your task is to read two events and classify how related they are
using exactly one of the label keys below. Base your judgement
on any causal, temporal, or thematic relationship that may exist.

First, in a few concise sentences, explain any causal,
temporal, or thematic links you see.
Then, on a new line, output ONLY one valid JSON object like:
{"label": "0.4-0.6"}. Do not include any additional text.

Labels (choose one key only):
"0.0-0.2" → Unrelated — No real connection in topic, time,
or influence.
"0.2-0.4"→ Weakly Related — Small thematic overlap, but
no causal or temporal influence.
"0.4-0.6"→ Moderately Related — Events share context or
actors but remain largely independent.
"0.6-0.8" → Strongly Related — One event influences or is
likely affected by the other.
"0.8-1.0" → Highly Related — One event is clearly a
consequence, cause, or restatement of the other.

Event 1
{e1_title}
{e1_desc}

Event 2
{e2_title}
{e2_desc}

Give your concise reasoning, then output the JSON ob-
ject on the next line.

Table 3: Comparison of Original vs. CoT prompt templates
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Ground Truth: 0.2–0.41098

GPT-o3-mini (CoT): 0.2–0.41099

GPT-o3-mini (No CoT): 0.4–0.61100

CoT: "Both events occur within the context of U.S.1101

Republican political dynamics in the 2024 election1102

cycle, sharing a general theme of intra-party com-1103

petition. However, they concern distinct contests1104

with different candidates and positions, and there1105

is no direct causal or temporal link between them."1106

We include the full benchmark results across all1107

domains and metrics in Tables 4–7.1108

F Full Benchmark Results1109

We include the full benchmark results across all1110

domains and metrics in Tables 4–7.1111

G Use Of AI Assistants1112

We did use ChatGPT as the writing assistant to1113

help us write part of the paper. Additionally, we1114

utilize the power of CodePilot to help us code faster.1115

However, all the AI-generated writing and coding1116

components assisted by AI are manually checked1117

and modified. There is no full AI-generated content1118

in the paper.1119
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Method MSE MAE Accuracy Macro-F1 QWK

random 0.1459 0.3130 0.1977 0.1377 0.0071
heuristic (vol. max→min) 0.0411 0.1674 0.2860 0.0910 -0.0040
heuristic (vol. sim.) 0.1113 0.3003 0.0691 0.0414 0.0089
heuristic (time overlap) 0.0459 0.1687 0.3437 0.1913 0.1121
GPT-4o 0.0234 0.1258 0.4317 0.2978 0.4094
GPT-4o + CoT 0.0250 0.1214 0.5116 0.2621 0.2843
GPT-o3-mini 0.0253 0.1322 0.3973 0.2722 0.3415
GPT-o3-mini + CoT 0.0188 0.1147 0.4561 0.2411 0.3238
Meta-Llama3-70B 0.0377 0.1532 0.3847 0.2543 0.4084
Meta-Llama3-70B + CoT 0.0327 0.1518 0.3400 0.2593 0.3887
DeepSeek-V3 0.0250 0.1291 0.4383 0.3100 0.4105
DeepSeek-V3 + CoT 0.0236 0.1286 0.4006 0.2752 0.3697
DeepSeek-R1 0.0830 0.2600 0.0940 0.0807 0.0786
DeepSeek-R1 + CoT 0.0512 0.1996 0.1959 0.1585 0.1162
Qwen2-72B 0.0309 0.1426 0.3800 0.2292 0.3526
Qwen2-72B + CoT 0.0338 0.1534 0.3200 0.2285 0.2749
cross-encoder (nli-deberta-v3-base) 0.0519 0.1812 0.2797 0.0969 0.1076
Qwen1.5-4B (zero-shot) 0.0839 0.2109 0.2960 0.1038 0.0311
Qwen1.5-4B (fine-tuned, LoRA) 0.0351 0.1300 0.4362 0.1813 0.1752

Table 4: Performance on Politics domain. Evaluation across selected metrics.

Method MSE MAE Accuracy Macro-F1 QWK

random 0.1330 0.3000 0.2019 0.1541 0.0125
heuristic (vol. max→min) 0.0878 0.2447 0.1430 0.0560 -0.0140
heuristic (vol. sim.) 0.0945 0.2645 0.1403 0.0864 0.0398
heuristic (time overlap) 0.0779 0.2274 0.2179 0.1344 0.1427
tag overlap* 0.0152 0.1014 0.5471 0.5691 0.6999
GPT-4o 0.0252 0.1265 0.4683 0.3584 0.5227
GPT-4o + CoT 0.0256 0.1274 0.4433 0.2687 0.4447
GPT-o3-mini 0.0412 0.1549 0.4284 0.3360 0.4645
GPT-o3-mini + CoT 0.0543 0.1638 0.4632 0.3531 0.5011
Meta-Llama3-70B 0.0416 0.1640 0.3828 0.3349 0.5004
Meta-Llama3-70B + CoT 0.0364 0.1612 0.3303 0.3278 0.4733
DeepSeek-V3 0.0242 0.1230 0.4974 0.3428 0.5187
DeepSeek-V3 + CoT 0.0289 0.1402 0.3963 0.3244 0.4886
DeepSeek-R1 0.0441 0.1833 0.2206 0.1137 0.1267
DeepSeek-R1 + CoT 0.0352 0.1698 0.2320 0.1420 0.0713
Qwen2-72B 0.0336 0.1488 0.4067 0.3069 0.4024
Qwen2-72B + CoT 0.0387 0.1683 0.2867 0.2385 0.3550
cross-encoder (nli-deberta-v3-base) 0.0888 0.2483 0.1466 0.0967 0.1491
Qwen1.5-4B (zero-shot) 0.1203 0.2693 0.2433 0.1691 0.1800
Qwen1.5-4B (fine-tuned, LoRA) 0.0760 0.1942 0.3592 0.3326 0.4519

Table 5: Performance on Cryptocurrency domain. Evaluation across selected metrics.
*Note: the "tag overlap" method was used as a feature in the creation of the ground-truth labels (see Section 5.2 and is therefore

not a benchmark baseline.

17



Method MSE MAE Accuracy Macro-F1 QWK

random 0.1423 0.3093 0.2016 0.1759 0.0099
heuristic (vol. max→min) 0.1612 0.3197 0.1090 0.0490 -0.0030
heuristic (vol. sim.) 0.0885 0.2531 0.1780 0.1289 0.0941
heuristic (time overlap) 0.0877 0.2383 0.2157 0.2058 0.4190
tag overlap* 0.0229 0.1298 0.4407 0.4982 0.7932
GPT-4o 0.1042 0.2558 0.1746 0.1431 0.2418
GPT-4o + CoT 0.0744 0.2209 0.2267 0.1890 0.3678
GPT-o3-mini 0.0931 0.2305 0.2840 0.2383 0.4805
GPT-o3-mini + CoT 0.1199 0.2654 0.2182 0.1922 0.3620
Meta-Llama3-70B 0.0772 0.2312 0.1813 0.1790 0.4399
Meta-Llama3-70B + CoT 0.0838 0.2404 0.1629 0.1523 0.3916
DeepSeek-V3 0.0884 0.2432 0.1678 0.1558 0.3438
DeepSeek-V3 + CoT 0.0909 0.2480 0.1500 0.1305 0.3026
DeepSeek-R1 0.0258 0.1307 0.4409 0.4599 0.3327
DeepSeek-R1 + CoT 0.0442 0.1625 0.3972 0.2620 0.3454
Qwen2-72B 0.0983 0.2422 0.2000 0.1751 0.2478
Qwen2-72B + CoT 0.1006 0.2476 0.1933 0.1625 0.2499
cross-encoder (nli-deberta-v3-base) 0.1779 0.3432 0.0916 0.0496 -0.0360
Qwen1.5-4B (zero-shot) 0.1463 0.3033 0.2000 0.1290 0.0018
Qwen1.5-4B (test metrics) 0.1286 0.2788 0.2850 0.1834 0.1468

Table 6: Performance on Sports domain. Evaluation across selected metrics.
*Note: the "tag overlap" method was used as a feature in the creation of the ground-truth labels (see Section 5.2 and is therefore

not a benchmark baseline.

Method MSE MAE Accuracy Macro-F1 QWK

random 0.1268 0.2914 0.2058 0.1558 0.0077
heuristic (vol. max→min) 0.0719 0.2227 0.1940 0.0870 -0.0200
heuristic (vol. sim.) 0.0850 0.2504 0.1610 0.0835 0.0181
heuristic (time overlap) 0.0639 0.2063 0.2570 0.1906 0.1380
tag overlap* 0.0175 0.1121 0.4721 0.5775 0.6283
GPT-4o 0.0219 0.1112 0.5575 0.2940 0.3522
GPT-4o + CoT 0.0346 0.1489 0.4033 0.3100 0.4149
GPT-o3-mini 0.0278 0.1344 0.4548 0.2088 0.2752
GPT-o3-mini + CoT 0.0231 0.1187 0.5451 0.2496 0.4183
Meta-Llama3-70B 0.0596 0.1970 0.3103 0.2468 0.3598
Meta-Llama3-70B + CoT 0.0470 0.1834 0.2660 0.2118 0.3397
DeepSeek-V3 0.0330 0.1456 0.4132 0.2953 0.4087
DeepSeek-V3 + CoT 0.0312 0.1450 0.3836 0.2930 0.4197
DeepSeek-R1 0.0441 0.1833 0.2206 0.1137 0.1267
DeepSeek-R1 + CoT 0.0220 0.1192 0.4636 0.1893 0.1715
Qwen2-72B 0.0430 0.1696 0.3233 0.2345 0.4127
Qwen2-72B + CoT 0.0383 0.1639 0.3200 0.2737 0.4104
cross-encoder (nli-deberta-v3-base) 0.0972 0.2604 0.1436 0.0688 0.1117
Qwen1.5-4B (zero-shot) 0.2099 0.3650 0.2217 0.1162 0.0458
Qwen1.5-4B (fine-tuned, LoRA) 0.0681 0.2017 0.3058 0.2401 0.3873

Table 7: Performance on Election domain. Evaluation across selected metrics.
*Note: the "tag overlap" method was used as a feature in the creation of the ground-truth labels (see Section 5.2 and is therefore

not a benchmark baseline.
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Table 8: Annotation scale with definitions and representative examples. Each bin corresponds to a level of
relevance used in rating event pairs.

Label
Range

Definition Example Event Pair

0.0–0.2 Unrelated; events concern differ-
ent topics, entities, or timelines.

Will China invade Taiwan in 2024?
vs.
Karine Jean-Pierre out as Press Secretary
by July 31?

0.2–0.4 Weakly related; minimal topical
overlap, but no structural link.

U.S. military action against Iran in 2024?
vs.
Democrats win popular vote by 4–5%?

0.4–0.6 Moderately related; shared ac-
tors, parties, or contexts.

Will another candidate win NY-16 Demo-
cratic Primary?
vs.
Will a candidate from another party win
NY Senate?

0.6–0.8 Strongly related; possible causal
or strategic link.

Will Trump tweet 90+ times Oct 25–Nov
1?
vs.
Will Trump win 30% of Black men?

0.8–1.0 Highly related; one event entails
the other.

Biden resign during his speech today?
vs.
Biden removed via 25th Amendment?
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H Heuristic Selection Methods1120

To provide interpretable baselines for social opin-1121

ion correlation reasoning, we introduce a set of1122

heuristic scoring methods for ranking candidate1123

event pairs. Unlike learned models, these heuris-1124

tics use domain knowledge and surface-level at-1125

tributes to estimate correlation scores without lan-1126

guage understanding or reasoning. They serve as1127

simple, zero-shot approximations to relevance or1128

co-movement between social opinions.1129

Random We assign a uniform random score to1130

each candidate event. This provides a lower-bound1131

reference for performance and reflects the difficulty1132

of the task in the absence of any meaningful signal.1133

Volume-Based Sorting We hypothesize that1134

highly traded events are more likely to be central or1135

influential in public discourse. For each candidate,1136

we compute its total market trading volume (over1137

the active time window) and use this as a relevance1138

score. We experiment with two variants:1139

• Volume Max-to-Min: Assigns the candidate’s1140

normalized trading volume as its correlation1141

score. Events with higher volume are assumed1142

to be more generally relevant, independent of the1143

base event.1144

• Volume Similarity: Computes the absolute dif-1145

ference in trading volume between the base and1146

candidate events. Event pairs with more similar1147

volumes receive higher scores, under the assump-1148

tion that similarly salient events may co-occur1149

in public discourse or exhibit social opinion co-1150

activation. 1151

Temporal Overlap We compute the degree of 1152

overlap in time between the base and candidate 1153

event windows. Events that occur in similar time- 1154

frames may be causally or contextually linked. The 1155

score is computed as the ratio of overlapping dura- 1156

tion to union duration. 1157

Cross-Encoder Baseline We include a 1158

strong neural retrieval baseline using the 1159

nli-deberta-v3-base cross-encoder. It jointly 1160

encodes event pairs and outputs a real-valued rele- 1161

vance score. Although trained on general-purpose 1162

sentence similarity or natural language inference 1163

tasks, it often captures surface-level lexical or 1164

semantic overlap, making it a competitive 0-hop 1165

semantic baseline. 1166

I Human Evaluation of Heuristic Scoring 1167

I.1 Setup 1168

Objective and Sampling. To assess whether our 1169

heuristic scoring function aligns with human intu- 1170

ition, we conducted an annotation study over 200 1171

event pairs. These pairs were drawn evenly across 1172

five correlation levels (very weak to very strong) 1173

according to the algorithmic relevance scores de- 1174

scribed in Section §4.2. This stratified sampling 1175

ensured that the full range of social opinion correla- 1176

tion strengths was represented, enabling consistent 1177

evaluation across relevance levels. 1178

Annotators and Conditions. Three annotators, 1179

who were NLP researchers involved in the project, 1180

participated in the study. While familiar with the 1181

modeling setup, they lacked domain-specific exper- 1182

tise in forecasting or geopolitical reasoning. An- 1183

notations were conducted non-blind: annotators 1184

shared the same rubric and examples to guide their 1185

judgments 1186

I.2 Annotation Protocol 1187

Rubric Development and Scoring Process. 1188

Prior to annotation, the three annotators collab- 1189

oratively developed a shared rubric to define five 1190

levels of social opinion correlation, ranging from 1191

unrelated to highly related. This rubric was itera- 1192

tively refined through internal calibration rounds, 1193

ensuring that all annotators applied consistent se- 1194

mantic and causal reasoning. During annotation, 1195

each annotator independently rated all 200 event 1196

pairs on a continuous scale from 0.0 to 1.0 using 1197

the agreed rubric. Table 8 summarizes the scoring 1198
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Table 9: Inter-annotator agreement. Pearson correla-
tion coefficients between annotators.

Annotator A Annotator B Annotator C

Annotator A 1.000 0.840 0.739
Annotator B 0.840 1.000 0.794
Annotator C 0.739 0.794 1.000

bins and includes representative examples for each1199

level.1200

Label Aggregation and Annotation Conditions.1201

Although annotators shared a rubric, the annota-1202

tion process itself was conducted independently1203

without real-time coordination. Final labels were1204

aggregated by majority vote; in cases of complete1205

disagreement, we averaged the three scores. To1206

prevent bias, annotators were shown only the event1207

texts, without access to social opinion trajectories,1208

model predictions, or algorithmic scores. This en-1209

sured that all judgments reflected semantic reason-1210

ing alone.1211

Annotator Agreement. We evaluate inter-1212

annotator reliability using both pairwise Pearson1213

correlations and intra-class correlation (ICC).1214

As shown in Table 9, pairwise Pearson scores1215

range from 0.739 to 0.840, indicating strong1216

linear consistency among annotators. The highest1217

alignment is observed between Annotators A and1218

B (0.840), while A and C show slightly lower but1219

still robust agreement (0.739). To complement this,1220

we compute ICC(2,1) under a two-way random1221

effects model, yielding a value of 0.777. This1222

reflects substantial agreement across annotators1223

and confirms the reliability of the human labels as1224

a benchmark for model alignment.1225

I.3 Alignment with Heuristic Model1226

To measure how well the heuristic score S(A,B)1227

matches human judgment, we compute the Pear-1228

son correlation between model predictions and the1229

aggregated human labels. The resulting correlation1230

of ρ = 0.697 (Table 10) indicates strong alignment1231

between the scoring function and human reasoning.1232

Table 10: Model-human alignment. Pearson correla-
tion between the heuristic score and human annotations.

Method Pearson Correlation

Heuristic score S(A,B) 0.697

J Detailed Performance Degradation 1233

After Cutoff 1234

K Demo Interface Overview 1235

We build a web-based demo to showcase how our 1236

system connects real-time news and prediction mar- 1237

ket data. The interface allows users to explore 1238

forecastable events, understand model-generated 1239

reasoning, and vote on likely outcomes. Below, we 1240

walk through its key components. 1241

Main Event Grid. Upon entering the demo (Fig- 1242

ure 7), users see a grid of active prediction ques- 1243

tions. Each card displays an event (e.g., “Will X 1244

and Truth Social merger be announced before Au- 1245

gust?”) along with real-time probability estimates 1246

for each outcome (Yes/No), sourced from Poly- 1247

market. Users can filter events by domain (e.g., 1248

politics, crypto) via the dropdown menu. Clicking 1249

on the “News” tab navigates to a dedicated news 1250

feed page. Selecting an individual event card leads 1251

to a detailed view for reasoning and voting. 1252

News Integration. The “News” section (Fig- 1253

ure 8) presents a chronological list of recent head- 1254

lines. Clicking on any headline redirects users to 1255

the original article. Users can also expand or col- 1256

lapse a card by clicking the dropdown triangle on 1257

the right. When expanded, the card reveals any pre- 1258

diction events automatically identified as seman- 1259

tically or causally related to the article, bridging 1260

news and social opinion markets. 1261

Detailed Event View. When clicking on a grid 1262

cell, users are taken to a dedicated page for that 1263

prediction question (Figure 9). Here, they can se- 1264

lect an outcome and choose from a list of candidate 1265

reasons generated by an LLM. These explanations 1266

help users interpret possible causal mechanisms. 1267

The right panel shows a time-series chart visualiz- 1268

ing real-time market probabilities for each option. 1269

After selecting both an outcome and a reason, users 1270

can vote to register their social opinion. 1271
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Note: For MSE and MAE, values are sign-inverted for consistent interpretation. Positive values indicate performance improvement, negative values indicate degradation.

Figure 6: Performance change after knowledge cutoff across domains and models. Bars show the relative change
in evaluation metrics on post-cutoff event pairs, compared to pre-cutoff ones. For metrics like MSE and MAE,
values are sign-inverted to ensure a consistent interpretation, where negative values indicate degraded performance.
GPT-4o shows a substantial decline across most metrics in the election domain, while performance remains more
stable in the politics domain.

Figure 7: Main interface with real-time prediction events. Cards show current market probabilities and are filterable
by topic.
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Figure 8: News page interface. Each news item links to the source and may surface relevant market events.

Figure 9: Detailed view of a prediction event. Users select an outcome and reason, then submit their vote.
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