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Abstract

Understanding how opinions on different is-
sues evolve together is essential for modeling
collective intelligence, yet this remains under-
explored due to the absence of standardized
benchmarks. We introduce the concept of an
opinion graph, where nodes represent social
opinions on real-world events (e.g., presidential
elections, stock predictions) and edges capture
pairwise relationships between them. Building
on this, we present OPINIONBENCH, a new
benchmark designed to evaluate whether large
language models (LLMs) can uncover the hid-
den structure within evolving social opinions.
Constructed from Polymarket prediction mar-
kets, OPINIONBENCH labels event pairs using
time-series co-movement, semantic similarity,
and metadata, followed by human validation.
Experiments show that (1) LLMs consistently
outperform baselines in identifying opinion cor-
relations across domains, and (2) LLMs can
infer the underlying graph structure through
edge prediction. OPINIONBENCH provides a
challenging testbed for assessing LLMs’ ability
to capture complex patterns of social opinion
co-evolution.

1 Introduction

Social opinions represent an individual’s subjective
perspective about uncertain future events—for ex-
ample, presidential election outcomes, economic
trends, or technological breakthroughs. Each per-
son holds a wide range of such opinions shaped
by their education, experiences, and social con-
text. These opinions encode people’s internal be-
liefs and expectations about how the world will
unfold and serve as the building blocks of collec-
tive reasoning and societal decision-making. Social
opinions exhibit two key structural features: (1)
Correlation — Social opinions are not formed or
updated in isolation. Multiple opinions are often
highly correlated and can shift together when new
information emerges. For example, a major poll
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Figure 1: An example of the opinion graph. In the
opinion graph, each node represents a social opinion
(data collected from PolyMarket), and edges denote
highly possible reasoning rationale between two social
opinions (data constructed with feature design and ver-
ified by humans). Similar social opinions are closely
correlated with each other and form a graph structure.
When the news appears, multiple social opinions in the
graph would co-evolve accordingly.

showing a surge in support for Donald Trump may
simultaneously update beliefs about “Will Trump
win the 2024 election?” and “Will Republicans
control the Senate?”, as the two events are tightly
connected. Likewise, an unexpected Federal Re-
serve policy announcement can jointly influence
opinions about interest rates and Bitcoin prices, re-
flecting shared macroeconomic sentiment (Li et al.,
2024; Lee et al., 2025; Radivojevic et al., 2024).
(2) Transductivity — Beyond pairwise edge rela-
tionships, if an opinion A is related to B, and B
to C, individuals may implicitly associate A with
C. Such multi-hop dependencies allow information
or belief changes to propagate indirectly across
cross-domain opinions (Zhu et al., 2003).

These properties make it natural to represent so-
cial opinions using an opinion graph. In this graph,



each node corresponds to a specific social opinion
toward a real-world event, and each edge represents
a relationship between two opinions, such as tem-
poral co-movement, semantic similarity, or causal
alignment(Kazemi et al., 2020). Because opin-
ions are often correlated and exhibit transductive
dependencies, the resulting graph naturally con-
tains clusters and higher-order structures(Fortunato,
2010), where groups of related opinions cohere
into tightly connected subgraphs. This graph-based
formulation for social opinions provides a princi-
pled way to model how opinions interact locally
while also capturing how information can propa-
gate globally through complex multi-hop connec-
tions(Hegselmann and Krause, 2002).

Identifying and predicting these latent structures
within social opinions is crucial for understand-
ing collective dynamics and forecasting societal
change. Structural patterns reveal how shocks can
propagate through interconnected opinions, poten-
tially amplifying into large-scale shifts—a “but-
terfly effect” at the level of public belief. Map-
ping these structures enables applications such as
detecting emerging narratives, anticipating coordi-
nated opinion shifts during crises, modeling sys-
temic financial or political risks, and improving the
interpretability of large language models analyz-
ing social behavior (Kolajo et al., 2022; Minnema
et al., 2023; Glandt et al., 2021; Wang et al., 2024;
Cann et al., 2023; Deng et al., 2021; Peng et al.,
2021). This raises a central research question: Can
we leverage LLMs to scalably discover the hidden
structure inside a large number of social opinions?
Addressing this question would open up new op-
portunities for analyzing collective reasoning at
unprecedented scale and granularity.

To address this question, we first collect high-
quality opinion graphs from SWM (Anonymous,
2025), a dataset compiled from Polymarket! , a
decentralized forecasting platform. Each node cor-
responds to a specific social opinion toward a real-
world event, and each edge is labeled based on a
combination of time-series co-movement and se-
mantic similarity, with labels generated automati-
cally and validated against human annotations to
ensure reliability. We then apply LLMs to perform
pairwise edge prediction, enabling us to reconstruct
the entire opinion graph from local edge-level infer-
ences and assess whether models can capture both
local correlations and global structural patterns.

"https://polymarket.com/

Our findings reveal two conclusions: (1) LLMs
can accurately predict edges in the opinion graph,
consistently outperforming heuristic and neural
baselines. For example, GPT-40 achieves QWK
scores above 0.52 on Cryptocurrency domain, sig-
nificantly surpassing all heuristic methods. (2)
Beyond local edges, LLMs can also recover the
global structure of the opinion graph: the predicted
graphs exhibit clustering patterns and structural
alignments that closely match the ground truth, in-
dicating that LLMs implicitly capture transductive
and higher-order regularities in social opinions.

2 Related Work

Social opinion dynamics. Understanding the dy-
namics of social opinions associated with real-
world events, such as co-occurrence, semantic rele-
vance, or implicit causal links, is fundamental to un-
derstanding social dynamics. Cataldi et al. (2010)
propose a co-occurrence graph to detect tweet
topics. The Whatsup framework (Hettiarachchi
et al., 2023) resolves co-occurring events using self-
learned word embeddings. TimeBank (Gast et al.,
2016) and MATRES (Ning et al., 2018) provide
structured datasets for temporal and causal relation
extraction. Zhou et al. (2021) introduces a BERT-
based model for reasoning over event correlations.
In the financial setting, MARKETGPT (Wheeler
and Varner, 2024) and PLUTUS (Xu et al., 2024)
develop pretrained models for market social opin-
ion understanding. However, many of these studies
rely on synthetic setups or structured event rep-
resentations, limiting their applicability to noisy,
ambiguous real-world social opinions. Our work
differs by introducing a realistic evaluation task
constructed from real-world market data, enabling
systematic measurement of LLMs’ ability to iden-
tify social opinion correlations under temporal un-
certainty and semantic sparsity.

Social reasoning. Prior work uses the term “so-
cial reasoning” to refer to tasks like understanding
social norms, commonsense interactions, or mod-
eling human mental states. For example, SocKET
benchmarks L.L.Ms on social-concept understand-
ing and moral expectations (Choi et al., 2023),
while Gandhi & colleagues study mental-state rea-
soning for theory-of-mind modeling (Gandhi et al.,
2024). Other work evaluates LLMs’ understand-
ing of social norms in large-scale benchmark set-
tings, such as the Social Norm dataset (Yuan et al.,
2024) and the NormAd cultural adaptability frame-
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work (Rao et al., 2025). Prior work often defines
social reasoning through individual or small-group
cognition, focusing on human-centric scripts or
moral norms. In contrast, we define it as identi-
fying meaningful connections between real-world
social opinions, capturing co-occurrence, semantic
relevance, or implicit causality in different domains.
Our task centers on reasoning over collective dy-
namics using noisy, unstructured signals (e.g., pre-
diction markets), shifting focus from interpersonal
commonsense to event-level inference relevant for
social science and forecasting.

3 Preliminary

Definition of opinion graphs. We represent the
relationships among social opinions using an opin-
ion graph G = (V, £), where V is the set of nodes
corresponding to individual social opinions, and
€ is the set of edges capturing meaningful ratio-
nales between pairs of opinions. This graph pro-
vides a unified representation of how collective
expectations about different real-world events are
connected through semantic, temporal, or causal
dependencies.

Social opinions as nodes. Each node v € V
represents a social opinion toward a real-world
event e € £. Formally, a node is defined as
Ve 1= (qe, {p§ tTil), where ¢, is the natural lan-
guage description of the event, and pf is the time se-
ries of daily market-implied probabilities extracted
from Polymarket. This time series reflects the
evolving collective belief about the event, while
ge provides semantic context. In our framework,
only the textual descriptions are used for model
inference, whereas temporal signals are utilized
for constructing and validating the ground-truth
correlations.

Reasoning rationales as edges. FEach edge
(vi,vj) € & represents a reasoning rationale that
links two social opinions. A rationale provides a
textual explanation describing why the two opin-
ions are related, such as shared semantic content
or correlated temporal dynamics. In other words,
edges encode interpretable relational explanations
that justify why two opinions should be connected.
Because social opinions are often correlated and ex-
hibit transductive dependencies, the resulting opin-
ion graph naturally forms clusters and higher-order
structures.

Opinion structure prediction task. The task we
defined on the opinion graph aims to reconstruct

the structure of the underlying opinion graph G
from observed social opinions V by evaluating the
plausibility of edges between node pairs. Formally,
given a set of candidate node pairs P C V x V,
the goal is to learn a scoring function s : P — R,
where s(v;, vj) quantifies the predicted rationale
strength between two social opinions v; and v;.
High scores correspond to pairs that are strongly
connected through semantic, temporal, or causal
reasoning, while low scores indicate weak or spuri-
ous associations. By applying a threshold 7 to the
predicted scores,

E={(vi,v;) € P|s(vi,v5) =7}, (D)

We aim to obtain a filtered set of edges that define
the predicted opinion graph G = (V, &) that should
be as similar as possible with the ground-truth one.

4 Constructing the Opinion Graph

To benchmark the social opinion correlation task,
we construct a dataset based on SWM (Anonymous,
2025), derived from Polymarket. In this section,
we first explain how social opinion pairs are se-
lected, then describe our procedure for collecting
ground-truth relationship labels.

4.1 Social Opinion Node Collection

Not all markets offer informative or reliable signals
for social opinion reasoning. To ensure that the
included events reflect collective crowd social opin-
ions rather than noise, we apply two filters: one
based on trading volume, the other on volatility of
social opinion movement.

Volume filter. Markets with very low trading vol-
ume are often driven by isolated trades and do
not reflect meaningful aggregation of public social
opinion. We remove the bottom 25% of events by
trading volume within each domain. This helps ex-
clude illiquid or inactive markets where probability
shifts are unreliable.

Volatility filter. We require the event to have a suf-
ficient probability of movement. A flat probability
series provides little statistical signal. By impos-
ing a minimum volatility threshold, we ensure that
the probability series contains enough variation to
make the correlation test meaningful. Details are
available in Appendix §C.1.

4.2 Reasoning Rationale Edge Collection

To construct ground-truth edges for the opinion
graph, we adopt a hybrid scoring framework that
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Figure 2: Overview of the OPINIONBENCH pipeline. (a) Social opinion node collection from Polymarket with
market filtering for reliability. (b) Reasoning rationale edge collection quantifies multi-level connections (5 levels)
via semantic, temporal, and tag similarities, verified by human annotation. (c) Opinion structure prediction evaluation
measures models’ ability to capture opinion relevance across domains, reasoning types, temporal generalization,

and network structure.

integrates multiple complementary signals. This
approach captures both semantic and temporal
aspects of social opinion relationships, allowing
us to go beyond surface similarity and identify
deeper correlations between event pairs. For each
pair (A, B), we compute four interpretable feature
scores, s1 through s4, and combine them into a
single composite relevance score.

Feature design. The four features capture dis-
tinct yet complementary aspects of social opinion
relationships. (1) Change-point synchrony s, de-
tects statistically significant shifts in each event’s
social opinion trajectory and measures how fre-
quently these shifts occur close together in time,
capturing coordinated changes in collective expec-
tations. (2) Tag Jaccard similarity so compares
Polymarket metadata tags, identifying topical over-
lap and shared discourse contexts. (3) Minimum
time gap s3 measures how closely in time the opin-
ion shifts of two events occur, providing a soft mea-
sure of temporal proximity. (4) Textual similarity
s4 computes embedding-based semantic similar-
ity between event descriptions, capturing lexical
and conceptual relatedness beyond metadata. Full
details of these feature definitions are provided in
Appendix §C.2.

Edge label construction. The four feature scores
are linearly combined into a single heuristic cor-

relation score S(A, B) = Z?Zl visi(A, B). The
resulting scores are discretized into five ordinal
levels (very weak, weak, medium, strong, very
strong), which serve as ground-truth edge labels
in our prediction task. By integrating heteroge-
neous information—temporal dynamics, topical
metadata, and textual semantics—this framework
produces high-quality, interpretable rationales for
edge construction in the opinion graph. We also col-
lect text-based rationale with state-of-the-art LLMs
(GPT-40) as part of the edge attribute.

Human verification. To assess the quality of the
heuristic labels, we conduct a human annotation
study on a representative subset of 200 event pairs,
sampled uniformly across the five correlation lev-
els. Three annotators independently rated each pair
based on textual semantics and related news, with-
out access to the underlying time series or model
predictions. Inter-annotator agreement was strong,
with pairwise Pearson correlations ranging from
0.739 to 0.840 and an intraclass correlation (ICC)
of 0.777. Moreover, the aggregated human judg-
ments were well aligned with the heuristic scores,
yielding a Pearson correlation of 0.697. These re-
sults confirm that the scoring framework reflects
intuitive assessments of social opinion correlation.
Full details of the protocol and annotation exam-
ples are provided in Appendix §I.
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Figure 3: Performance on opinion graph edge scoring across four domains: Politics, Crypto, Sports, and
Election. Only the strongest baseline is included for comparison. Each heatmap shows model performance
across five metrics: MSE, MAE (lower is better before negation), and Accuracy, Macro-F1, QWK (higher is better).
To make metrics comparable, error metrics are first negated so that higher values indicate better performance,
and then all values are min—max normalized within each metric and dataset. Models are sorted by their average

normalized score across all datasets. Higher values indicate better normalized performance.

5 Predicting the Opinion Graph

We use LLMs to perform opinion graph discov-
ery by jointly predicting a rationale and a score
for each candidate edge. Given a pair of social
opinions (v;,v;) € P, represented by their event
descriptions and opinion trajectories, the model is
prompted to reason about their relationship and
generate two outputs simultaneously: a textual ex-
planation describing why the two opinions may be
correlated, and a scalar score indicating the pre-
dicted strength of this relationship. Formally, for
each node pair (v;,v;), the LLM implements a
mapping Pr1m : P — R X R, where R denotes
the space of textual rationales. The output

Op (s, Uj) = (Ti,ja ) Si,j) 2

consists of a text-based rationale ; ; € R explain-
ing the potential connection between v; and v, and
ascore s; j € R reflecting the predicted strength of
their relationship.

The predicted opinion graph is then recon-
structed by applying a threshold 7 to the set of
predicted scores. Specifically, we retain edges with
s;j > 7 to form the edge set following Eq. 1,
which defines the predicted graph G = (V,&g).

The generated rationales provide interpretable jus-
tifications for each predicted edge, while the scores
enable scalable graph recovery through pairwise
evaluation. This joint rationale—score prediction
framework allows LLMs to explicitly reason about
social opinion relationships.

6 Experimental Settings

Baselines. We implement several heuristic base-
lines that rely on simple similarity or overlap met-
rics computed from event metadata. We also
include a neural baseline using a cross-encoder
model 2 (nli-deberta-v3-base), which com-
putes a scalar relevance score from the concate-
nated text of the two event descriptions. These con-
tinuous scores are then discretized into the same
five relevance bins for evaluation.

Prompting-based LLMs. We evaluate models
including GPT model family (Hurst et al., 2024),
Qwen2 model family (Team et al., 2024), LLaMA
model familty (Touvron et al., 2023) and DeepSeek-
R1 (Guo et al., 2025) using a rationale-based clas-
sification setup. Given two social opinion titles and

2https://huggingface.co/cross—encoder/
nli-deberta-v3-base
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descriptions, the LLM first generates a structured
rationale explaining links between events, then se-
lects relevance levels. For comparison, we also
include a variant where models directly predict the
relevance label without explicit reasoning.

Edge-level evaluation metrics. We evaluate per-
formance at both the edge and graph levels. For
edge-level metrics, we include MSE, MAE, Accu-
racy, Macro-F1, and Quadratic Weighted Kappa
(QWK). All of them are aimed for evaluating the
classification performance. Typically, QWK is a
classical ranking correlation metric computed as

> WiiOij

QWK = 1—=bd 970
> WiiEij

3)

where O and F are the observed and expected rat-
ing matrices, and W is the quadratic weight matrix.

Graph-level evaluation metrics. Graph-level met-
rics include: (1) Largest Connected Component

ratio (LCC), defined as LCC = ‘V"{‘/""’J; (2) Clus-

tering coefficient, C' = %ZZ % where T;

is the number of triangles through node i; (3)

Strength correlation, p = corr (s$T, sP4), where

s; is the weighted degree; (4) Transitivity, Trans =
3X# triangles . ..

Fconnected triples These metrics jointly assess the

global structural fidelity.

7 Experimental Results

LLMs generally achieve strong edge predic-
tion performance across domains. In Fig-
ure 3, we evaluate model performance across
four domains—Politics, Election, Crypto, and
Sports—using both classification (Accuracy, F1,
QWK) and regression (MSE, MAE) metrics. Over-
all, GPT-40 + Chain-of-Thought (Wei et al., 2022)
achieves the strongest and most stable results, out-
performing smaller variants (e.g., GPT-03-mini)
and competitive open-source baselines (e.g., Meta-
Llama-3-70B, Qwen2-72B) in most settings. While
minor domain-specific variations exist, the trend
highlights that LLMs can effectively infer event
relationships from textual descriptions alone, with-
out relying on metadata. Heuristic baselines based
on time overlap perform markedly worse, further
emphasizing the advantage of language-based rea-
soning.

Rationale generation helps most in domains re-
quiring complex reasoning. CoT prompting pro-
vides the greatest benefit in domains like Politics

Domain LCC Clustering Corr. Trans.
Politics 92.6—82.8 0.088—0.087 0.983  78.0%
Election 98.5—99.3 0.257—0.276  0.991  90.8%
Crypto  99.4—97.8 0.131—0.104 0970 87.8%
Sports  91.6—45.0 0.077—0.034 0.954 90.0%" "

Table 1: LLM-based predictions preserve network
structure. LCC represents the percentage of the largest
connected component ratio. Clustering represents the
local cohesion. Corr. represents edge-weight alignment.
Trans. represents transitivity. X — Y represents the
ground-truth one — the predicted one. A small differ-
ence between X and Y indicates the high fidelity for
prediction. *" indicates p < 0.05.

and Election. In these settings, models like GPT-40-
CoT and GPT-03-mini-CoT achieve notable gains
in regression accuracy and ranking consistency,
reflecting their ability to uncover indirect depen-
dencies between events. However, these benefits
are domain-specific: CoT improves calibration but
not classification metrics in Politics, and primar-
ily boosts regression in Election. In contrast, in
Crypto and Sports—where relationships are largely
surface-level—CoT often introduces unnecessary
noise, leading to drops in Accuracy. Overall, ratio-
nale generation enhances performance when rea-
soning complexity is high, but can be detrimental
when simple textual cues suffice.

Ground-truth opinion graphs show clear higher-
order structure. Although the benchmark labels
pairwise correlations, these links form cohesive
multi-event networks. As shown in Table 1, across
all domains, 92-99% of events belong to a single
connected component. Clustering coefficients are
12-29x higher than random (Politics: 0.088 vs.
0.003; Election: 0.257 vs. 0.012), revealing abun-
dant triangular motifs. Louvain detection yields
modularity of 0.50-0.77, well above random parti-
tions. These results show that pairwise correlations
naturally organize into structured, high-order opin-
ion graphs, allowing pairwise evaluation to probe
broader belief dynamics.

LLM-predicted graphs preserve key structural
patterns. We then assess whether model-predicted
graphs retain the structural properties of ground
truth. As shown in Table 1, in Election and Crypto,
connectivity and clustering closely match ground
truth (<2% difference), with identical modularity
in Crypto (0.578). Strength correlations (weighted
degrees) exceed 0.95 across all domains. Transi-
tivity, reflecting logical consistency, remains high
(76-92%) and far above random baselines (~41%).
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Politics shows moderate degradation (83% vs. 93%
GT connectivity), while Sports has lower con-
nectivity (45%) but exceptionally high transitivity
(98%), indicating locally consistent yet globally
fragmented predictions. Overall, LLMs preserve
network structure in semantically coherent domains
and maintain local consistency even when global
alignment weakens.

8 Case Study

Beyond statistical evaluation results on edge and
graph prediction, we conduct microscopic case
studies to examine how well LLM-based predictors
reconstruct opinion graphs at two structural levels:
edges and paths. This hierarchical perspective re-
veals how LLM-based rationale prediction can be
used to make local predictions scale into global
graph structure discovery. Additional examples are
provided in Appendix §E.

Edge level: local correlations and reasoning ra-
tionales. Edges in the opinion graph can be sup-
ported by either simple or complex reasoning. Fig-
ure 4(a, left) shows a simple case, where two opin-
ions share a clear topical overlap (e.g., both concern
cryptocurrency but focus on different coins). The
model’s rationale is straightforward—it notes that
they “share a common thematic context.” In con-
trast, Figure 4(a, right) presents a complex case,
where the connection depends on multi-step tem-
poral or causal reasoning. For example, a Federal
Reserve interest rate hike can tighten monetary con-
ditions and redirect capital away from speculative
assets like Ethereum, linking two seemingly distant
opinions. Together, these simple topical links and
complex causal chains form the backbone of the

opinion graph structure.

Path level: chaining social opinions and the but-
terfly effect. Building on both simple and complex
edges, Figure 4(b) shows how related opinions can
form extended chains (paths in the opinion graph)
through shared entities or causal dependencies. For
example, a sequence linking Trump’s campaign
statements to rally participation and ultimately to
electoral outcomes illustrates how opinions evolve
across interconnected contexts. Simple edges link
central events to related ones, while complex edges
propagate these connections across domains, cre-
ating reasoning paths that reflect the butterfly ef-
fect—where local signals spread through institu-
tional or topical structures to shape broader expec-
tations. These case studies demonstrate that LLMs
can uncover such latent chains and generate coher-
ent, evolving rationales that connect multiple social
opinions, ultimately revealing the hidden structure
underlying collective beliefs.

9 Discussion

To understand when and why LLMs succeed at un-
covering social opinion structures, we focus on four
key factors. We examine how performance varies
across domains with different semantic structures
(RQ1) and investigate the reasoning strategies mod-
els use to make predictions (RQ2). We then assess
whether scaling and fine-tuning smaller models
can improve efficiency without sacrificing accu-
racy (RQ3), and evaluate the role of knowledge
recency in generalizing to unseen events (RQ4).

RQ1: What domain are LLMs good at?

LLMs perform well in semantically dense domains
but struggle in sparse ones. As shown in Figure 3,



model performance varies by domain structure. In
Crypto and Election, where events share entities,
timelines, or institutions, models achieve stronger
results. Even simple heuristics perform well due
to the rich semantic context. In contrast, Sports
events are often isolated and actor-specific, leading
to the weakest performance. Political events fall
in between, requiring both structural and contex-
tual reasoning. These patterns suggest that LLMs
are most effective in domains with coherent and
recurring semantics.

RQ2: How do LLMs reason for prediction?

To better understand what types of relationships
LLMs rely on when judging social opinion corre-
lation, we analyze their CoT outputs and catego-
rize the reasoning basis. As shown in Figure 5,
only a small fraction of cases reflect explicit log-
ical connections: approximately 8.7% in politics
and less than 5.7% in sports. In contrast, a large
proportion of predictions fall under confounding
relationships (e.g., shared context or common back-
ground factors), accounting for 55% in politics and
32% in sports. These results suggest that LLMs do
not primarily rely on formal logic or direct causal-
ity. Instead, they often identify perceived connec-
tions through narrative, intuition, or shared framing.
This supports our interpretation that the LLM cap-
tures relatedness rather than causal inference.

RQ3: Does training on LLMs improve
performance for edge prediction?

As shown in Figure 3, fine-tuning significantly
boosts the performance of smaller models for opin-
ion graph prediction. We fine-tuned Qwen1.5-4B
on 500 social opinion pairs and evaluated it on the
same test set. The fine-tuned model shows substan-
tial gains over its zero-shot version and becomes
competitive with much larger models, achieving
performance comparable to Meta-Llama3-70B in
certain domains. These results suggest that smaller,
specialized models can serve as efficient and effec-
tive alternatives to large general-purpose LLMs.

RQ4: Does the knowledge cutoff matter?

We investigate whether LLMs rely on factual
knowledge from pretraining or can generalize to
unseen events. To this end, we compare model
performance on event pairs occurring before and
after the model’s knowledge cutoff. As shown in
Figure 2, all evaluated models exhibit clear perfor-
mance degradation on post-cutoff examples in the
election domain, measured by percentage change
in MSE. For instance, GPT-40 shows a substantial

.
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Figure 5: Distribution of reasoning types across do-
mains. Each edge was labeled based on the explanation
produced by the model. A majority of predictions are
based on shared context (confounding) or loose narra-
tive links (CoT basis), while only a small portion exhibit
explicit logical or causal reasoning. This suggests the
model is primarily identifying correlations rather than
inferring direct causal links.

Model Before| After] A (%)
Heuristic (Time-OL)  0.0639 - -
LLaMA 0.0556  0.0656  +18.0
DeepSeek v3 0.0318  0.0348 +9.4
GPT-40 0.0167 0.0252  +50.9

Table 2: Results on temporal generalization. We
report MSE before/after the knowledge cutoft (Elec-
tion). All models exhibit worse MSE performance on
post-cutoff event pairs, highlighting challenges in tem-
poral generalization. GPT-40 shows the highest increase.
Time-OL represents time-overlapping.

drop of over 50%, while DeepSeek-v3 and LLaMA-
3 also experience notable declines. These results
suggest that while LLMs may generalize to unseen
patterns to some extent, their ability to capture
social opinion correlation often depends on up-to-
date world knowledge learned during pretraining.

10 Conclusion

In summary, social opinions form richly structured
networks and make graph-based representations
a natural framework for understanding collective
belief dynamics. By leveraging high-quality opin-
ion graphs and applying LL.Ms to edge prediction
tasks, we show that LLMs not only excel at predict-
ing pairwise relations but also recover higher-order
structural patterns that closely mirror ground-truth
networks. These findings demonstrate that LLMs
implicitly capture the latent organization of social
opinions, enabling scalable analysis of emerging
belief dynamics. Looking ahead, our framework
can motivate future work for better studies on opin-
ion dynamics and social simulation.



Limitations

Heuristic-score-based ground truth Our
ground-truth labels are derived from a weighted
heuristic score S(A, B) that combines temporal
synchrony, textual similarity and time alignment
(see Section §4.2). Although this method improves
over pure correlation-based approaches (e.g.
Kendall’s 7), it can still assign high scores to
spurious pairs, for example events with spikes
in coincident volatility or shared metadata but
without substantive connection.  Such false
positives can penalize models that correctly reject
these superficial links, limiting the fidelity of the
supervision signal.

Platform and domain bias. Polymarket does not
list every real-world event - in many domains, the
coverage is patchy.

Pairwise relation assumption. Our framework
estimates the strength of social opinion correla-
tions using pairwise relationships between events.
While this design enables interpretable and scalable
analysis, it does not explicitly capture higher-order
dependencies among multiple events. Future work
could explore multi-event or graph-based inference
methods to model collective reasoning patterns that
go beyond pairwise interactions.

Temporal overlap assumption. Our approach
focuses on social opinion pairs with overlapping
active periods to ensure that the measured time-
series correlations capture dynamic co-movement
as traders respond to new information. While this
design helps reduce noise in estimating relevance,
it also limits the benchmark’s ability to evaluate
delayed or indirect causal links that might manifest
outside of these overlapping windows. Future work
could explore more advanced temporal modeling
strategies, such as lag-aware correlation measures
or causal inference techniques to better capture
these complex, cross-temporal relationships.

Ethical Statement

This work analyzes public event data from Poly-
market, a prediction market platform that provides
open-access market-level data without any user-
identifiable information. We do not collect or pro-
cess individual-level data, and all analysis is con-
ducted at the event level. Thus, privacy concerns
are minimal.

Our evaluation framework involves using large
language models (LLMs) to assess the relevance be-

tween social events. These models, while powerful,
may exhibit unintended biases, particularly in po-
litically sensitive or socially charged domains. We
caution against using these models as authoritative
predictors or decision-making tools in high-stakes
environments.

Additionally, while our work aims to understand
event relationships, it does not attempt to fore-
cast outcomes or provide trading recommendations.
The models are evaluated solely on their reason-
ing and ranking capability and should not be inter-
preted as reliable financial or political forecasting
instruments.

Finally, while our method is training-free, the
evaluation dataset itself may reflect biases from
Polymarket’s coverage, which is shaped by com-
munity interest and market dynamics. As a result,
certain domains, such as Sports or Politics, may
be overrepresented, potentially influencing model
predictions or evaluation trends. We encourage fu-
ture work to broaden coverage to include a more
balanced set of social domains.
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A Artifact Details

A.1 Artifact Information

This artifact contains all components required to
reproduce the results in our study of social opin-
ion correlation reasoning in large language models
(LLMs). It includes:

Code: A complete implementation of the pair-
wise social opinion correlation scoring pipeline,
including preprocessing, model inference (with
and without CoT prompting), and evaluation met-
rics.

Data:

— Manually annotated development and test
sets across four domains: Politics, Election,
Cryptocurrency, and Sports.

— Rubric definitions used to guide annotation.

— Annotation metadata and inter-annotator
agreement statistics.

Models: Inference scripts for querying multiple
foundation models via standard APIs. Specifi-
cally, GPT-40 and GPT-03-mini were accessed
through the official OpenAl API, while Meta-
Llama-3, DeepSeek-V3, and Qwen?2 series were
accessed via the Together.ai inference platform.
All calls are wrapped with reproducible config-
urations, and API versions are specified to en-
sure consistent results across runs. For models
supporting CoT prompting, the corresponding
CoT-enabled variants are also included.
Evaluation: Scripts to compute both regression
and classification metrics, including MSE, MAE,
Accuracy, Macro-F1, QWK. Also included are
scripts to produce the figures and tables in the
main paper and appendix.

Case Study Tools: Utilities for constructing so-
cial opinion chains, visualizing social opinion
graphs, and analyzing CoT rationales.

The artifact is designed for easy replication and
modification. Each script is documented with usage
instructions, input formats, and expected outputs.
Running the default configuration will reproduce
all key results from the paper. At the time of sub-
mission, these materials are under preparation for
release. We will make the code and data available
upon publication.

A.2 Artifact License

All components of our artifact are intended for
research use and will be released under open-source
or permissive licenses upon publication.
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* Codebase: The full codebase, including prepro-
cessing, inference, and evaluation scripts, will be
released under the MIT License.

* Annotated Data: The manually labeled develop-
ment and test sets, along with rubric definitions
and annotation metadata, are original contribu-
tions of this work. These datasets will be released
under the CC BY 4.0 License, permitting reuse
with attribution for research and non-commercial
purposes.

— Codebase: The full codebase, including pre-
processing, inference, and evaluation scripts,
will be released under the MIT License.

— Annotated Data: The manually labeled devel-
opment and test sets, along with rubric defi-
nitions and annotation metadata, are original
contributions of this work. These datasets will
be released under the CC BY 4.0 License, per-
mitting reuse with attribution for research and
non-commercial purposes.

— Model Usage: Our study relies on querying
several pretrained language models. We use
GPT-40 and GPT-03-mini via the OpenAl
API? which are proprietary models licensed
by OpenAl. We also evaluate open-weight
models including Meta-Llama-3 70B (gra,
2024), DeepSeek-V3 (dee, 2025b), DeepSeek-
R1 (dee, 2025a), and Qwen2 (yan, 2024), ac-
cessed through the Together.ai inference plat-
form, all released under Apache 2.0 or simi-
lar permissive licenses. In addition, we fine-
tune Qwenl.5-4B (Team, 2024) (LoRA vari-
ant) using the Hugging Face Transformers li-
brary,* which is an open-weight model under
the Apache 2.0 License. The fine-tuning was
performed on a single NVIDIA A100 GPU for
approximately 10 minutes, with no large-scale
computational resources required. For com-
parison, we include a cross-encoder baseline
using nli-deberta-v3-base® from Hugging
Face, licensed under the MIT License.

We respect all license terms associated with the
use of these third-party models and APIs. No
model weights are redistributed. All data and code
will be clearly marked with their respective licenses
in the released repository.

3https://platform.openai.com/docs/models/
gpt-4o0

*https://huggingface.co/Qwen/Qwen1.5-4B

5https://huggingface.co/cross—encoder/
nli-deberta-v3-base


https://platform.openai.com/docs/models/gpt-4o
https://platform.openai.com/docs/models/gpt-4o
https://huggingface.co/Qwen/Qwen1.5-4B
https://huggingface.co/cross-encoder/nli-deberta-v3-base
https://huggingface.co/cross-encoder/nli-deberta-v3-base

A.3 Data Usage

Our dataset includes events across four domains:
Politics, Election, Cryptocurrency, and Sports. We
use a subset of Polymarket data curated by prior
work currently under review (Anonymous, 2025).
The final dataset will be released under the MIT
License for academic use.

* Source and Licensing:

» Use Consistency: Our data usage is consistent
with the intended purpose of the source materials,
which were either licensed for research or cre-
ated explicitly for this project. No repurposing
beyond research evaluation has been conducted.

* Human Annotation: Each social opinion corre-
lation pair in the development and test sets was
labeled by multiple annotators using a rubric-
based scale. Inter-annotator agreement scores are
included in the Appendix §I to reflect labeling
quality.

* Privacy and Safety: The dataset does not con-
tain any personally identifiable information (PII),
user metadata, or social media handles. All
text has been reviewed to exclude offensive con-
tent, and no inference was made regarding demo-
graphic or protected attributes.

* Intended Use: The dataset is intended exclu-
sively for research on social reasoning, social
opinion dynamics, and LLM evaluation. It is
not suitable for deployment in user-facing appli-
cations or downstream tasks involving sensitive
decision-making.

A.4 Data Statistics

Our benchmark covers four domains: Politics, Elec-

tion, Cryptocurrency, and Sports.
The final benchmark includes:

* Total event pairs: 8,839

* Label format: Each pair is assigned a con-
tinuous social opinion correlation score in the
range [0, 1], reflecting graded relatedness. For
classification-based analyses, scores are mapped
to a 5-point ordinal scale (from strongly unrelated
to strongly related) using predefined thresholds.

* Label source: The majority of labels were de-
rived programmatically via rubric-based scoring;
a small subset was verified by human annotators
for calibration and quality assurance.

* Agreement check: For the verified subset, each
pair was annotated by 3 annotators. The average
inter-annotator correlation exceeds 0.78, indicat-
ing strong agreement on the ordinal scale used
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for verification.

B Computational Resources.

The only locally fine-tuned model was Qwen1.5-
4B (LoRA), trained on a single NVIDIA A100
GPU (80GB) for approximately 10 minutes, corre-
sponding to a total compute budget of ~0.17 GPU-
hours. The LoRA adapters introduce fewer than 1%
of the base model’s parameters. All other models
were accessed via the OpenAl and Together.ai in-
ference APISs, requiring no additional training. All
runs were executed deterministically with fixed ran-
dom seeds and single-threaded decoding to ensure
reproducibility.

C Dataset Construction Details

C.1 Volatility filter details

We include the volatility filter here. Let 7
logit(p;) — logit(p;—1) be logit return, i.e., day-

to-day changes in log-odds. Denote by oéw) the
rolling standard deviation of {r-}._, ., overa
window of w days. Let « be the volatility threshold
and « be the required proportion. We retain a base
market only if

T
1 (w)
Twri 2]z @

i.e., at least « fraction of the windows have the
standard deviation of the daily logit returns above

7.
C.2 Edge construction feature details

Featurel: Change-point synchrony. We iden-
tify time points where an event’s social opinion
trajectory exhibits statistically significant shifts by
applying z-score thresholding to the price deltas
in its time series. For each event, we extract a set
of such change points. The synchrony score then
measures the fraction of change points in event A
that align within a short temporal window J of any
change point in event B. This captures the intuition
that jointly fluctuating social opinions are likely to
be correlated:

1

s1(A,B) = Tal

> K[EYeTs |t-t]<d].
teTa

(%)
Feature2: Tag Jaccard similarity. To estimate
topical overlap, we use the Jaccard index over tag



sets from Polymarket metadata. Each event in-
cludes tags that describe its domain or subject mat-
ter. A high Jaccard score indicates that two events
are framed under similar categories or themes,
which may reflect a shared discourse context:

. |]CA N ICB‘

AB)= ———.
32( ; ) |’CAUICB‘

(6)

Feature3: Minimum time gap. We compute the
minimum absolute time difference between any
change point in event A and any in event B. This
measures how closely social opinion shifts in the
two events occur in time. We convert this to a soft
similarity score using a monotonic inverse transfor-
mation:

1

53(A7B) = [ (7)

[t—t’
T

min
teTa, t'eTp

1+

Feature4: Textual similarity. We embed the text
descriptions of events using sentence-transformer
models and compute cosine similarity between the
resulting embeddings. This feature captures seman-
tic proximity at the lexical and conceptual level,
and complements the tag-based feature with more
nuanced language modeling:

s4(A,B) =1 —cos (ea,eB). 8
Overall. The four feature scores are linearly com-
bined into a single heuristic correlation score. The
weights are optimized on a development set to
best match human relevance judgments. We dis-
cretize S(A, B) into five relevance classes: very
weak (0.0-0.2), weak (0.2-0.4), medium (0.4-0.6),
strong (0.6-0.8), and very strong (0.8—1.0). These
bucketed labels serve as groundtruth in evaluation:

4
S(A,B) =) w;-si(A,B) ©)
=1

where w; is tuned to make the prediction highly
aligned with a small set of human annota-
tion results. The final normalized weights are:
Wsyne=0.2688, Wjacc=0.3652, wiime=0.1228, and
Wiext=0.2435.

D LLM Prompt

The prompt of the zero shot and CoT version are
in Table 3
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E Case Study Examples
E.1 Simple

These pairs are topically similar but lack direct
causal or temporal connection.

Example 1 Event 1: USDC market cap over $25
billion EOY?

Event 2: Will ETH hit $2,000 by EOY?

Ground Truth: 0.4-0.6

GPT-03-mini (CoT): 0.2-0.4

GPT-03-mini (No CoT): 0.4-0.6

CoT: "Both events occur in the cryptocurrency
space, with one focusing on the stablecoin USDC’s
market cap and the other on ETH’s price. They
share a common thematic context but are mea-
suring distinct characteristics of the crypto mar-
ket with minimal direct causal influence between
them."

Example 2 Event 1: Will ETH hit $2,000 by
EOY?

Event 2: Huobi insolvent in 20237

Ground Truth: 0.4-0.6

GPT-03-mini (CoT): 0.2-0.4

GPT-03-mini (No CoT): 0.4-0.6

CoT: "Both events relate to the cryptocurrency in-
dustry. However, while ETH reaching a certain
price is a market performance event, Huobi’s insol-
vency is a corporate financial event. Their connec-
tion is thematic but not directly causal or tempo-
rally linked."

E.2 Complex

These examples involve shared actors, institutional
decisions, or policy-level connections.

Example 3 Event 1: Will SEC delay Bitcoin
ETF decision?

Event 2: Ethereum spot ETF approved by Mar 31?7
Ground Truth: 0.6-0.8

GPT-03-mini (CoT): 0.6-0.8

GPT-03-mini (No CoT): 0.4-0.6

CoT: "Both events involve SEC decisions regard-
ing cryptocurrency ETFs. They are thematically
linked, as they both pertain to regulatory actions on
crypto investments and have overlapping timelines,
despite focusing on different digital assets (Bitcoin
and Ethereum)."

Example 4 Event 1: Will Haley beat DeSantis
in lowa?

Event 2: Will Kristi Noem win the U.S. 2024 Re-
publican VP nomination?



Original Prompt

CoT Prompt

You are an expert in interpreting and reasoning about real-world
events, such as those found on prediction markets.

Your task is to read two events and classify how related they are
using exactly one of the label keys below. Base your judgement
on any causal, temporal, or thematic relationship that may exist.

Return only a valid JSON object in the form: {"label”:
"0.4-0.6"}. Do not include explanations, formatting, or any
additional text.

Labels (choose one key only):

"0.0-0.2" — Unrelated — No real connection in topic, time,
or influence.

"0.2-0.4" — Weakly Related — Small thematic overlap, but
no causal or temporal influence.

"0.4-0.6" — Moderately Related — Events share context or
actors but remain largely independent.

"0.6-0.8" — Strongly Related — One event influences or is
likely affected by the other.

"0.8-1.0" — Highly Related — One event is clearly a
consequence, cause, or restatement of the other.

Event 1
{el1_title}
{e1_desc}

Event 2
{e2_title}
{e2_desc}

Strictly respond with a JSON object like:
"0.6-0.8"}

{"label”:

You are an expert in interpreting and reasoning about real-world
events, such as those found on prediction markets.

Your task is to read two events and classify how related they are
using exactly one of the label keys below. Base your judgement
on any causal, temporal, or thematic relationship that may exist.

First, in a few concise sentences, explain any causal,
temporal, or thematic links you see.

Then, on a new line, output ONLY one valid JSON object like:
{"label”: "@.4-0.6"}. Do not include any additional text.

Labels (choose one key only):

"0.0-0.2" — Unrelated — No real connection in topic, time,
or influence.

"0.2-0.4" — Weakly Related — Small thematic overlap, but
no causal or temporal influence.

"0.4-0.6" — Moderately Related — Events share context or
actors but remain largely independent.

"0.6-0.8" — Strongly Related — One event influences or is
likely affected by the other.

"0.8-1.0" — Highly Related — One event is clearly a
consequence, cause, or restatement of the other.

Event 1
{el_title}
{el1_desc}

Event 2
{e2_title}
{e2_desc}

Give your concise reasoning, then output the JSON ob-
ject on the next line.

Table 3: Comparison of Original vs. CoT prompt templates
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Ground Truth: 0.2-0.4

GPT-03-mini (CoT): 0.2-0.4

GPT-03-mini (No CoT): 0.4-0.6

CoT: "Both events occur within the context of U.S.
Republican political dynamics in the 2024 election
cycle, sharing a general theme of intra-party com-
petition. However, they concern distinct contests
with different candidates and positions, and there
is no direct causal or temporal link between them."
We include the full benchmark results across all
domains and metrics in Tables 4-7.

F Full Benchmark Results

We include the full benchmark results across all
domains and metrics in Tables 4—7.

G Use Of AI Assistants

We did use ChatGPT as the writing assistant to
help us write part of the paper. Additionally, we
utilize the power of CodePilot to help us code faster.
However, all the Al-generated writing and coding
components assisted by Al are manually checked
and modified. There is no full Al-generated content
in the paper.
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Method MSE MAE  Accuracy Macro-F1 QWK

random 0.1459  0.3130 0.1977 0.1377 0.0071

heuristic (vol. max—>min) 0.0411 0.1674 0.2860 0.0910 -0.0040
heuristic (vol. sim.) 0.1113  0.3003 0.0691 0.0414 0.0089
heuristic (time overlap) 0.0459 0.1687 0.3437 0.1913 0.1121

GPT-40 0.0234 0.1258 0.4317 0.2978 0.4094
GPT-40 + CoT 0.0250 0.1214 0.5116 0.2621 0.2843
GPT-03-mini 0.0253  0.1322 0.3973 0.2722 0.3415
GPT-03-mini + CoT 0.0188 0.1147 0.4561 0.2411 0.3238
Meta-Llama3-70B 0.0377 0.1532 0.3847 0.2543 0.4084
Meta-Llama3-70B + CoT 0.0327 0.1518 0.3400 0.2593 0.3887
DeepSeek-V3 0.0250 0.1291 0.4383 0.3100 0.4105
DeepSeek-V3 + CoT 0.0236  0.1286 0.4006 0.2752 0.3697
DeepSeek-R1 0.0830 0.2600 0.0940 0.0807 0.0786
DeepSeek-R1 + CoT 0.0512  0.1996 0.1959 0.1585 0.1162
Qwen2-72B 0.0309 0.1426 0.3800 0.2292 0.3526
Qwen2-72B + CoT 0.0338 0.1534 0.3200 0.2285 0.2749
cross-encoder (nli-deberta-v3-base) 0.0519 0.1812 0.2797 0.0969 0.1076
Qwenl.5-4B (zero-shot) 0.0839 0.2109 0.2960 0.1038 0.0311

Qwen1.5-4B (fine-tuned, LoRA) 0.0351  0.1300 0.4362 0.1813 0.1752

Table 4: Performance on Politics domain. Evaluation across selected metrics.

Method MSE MAE  Accuracy Macro-F1 QWK
random 0.1330  0.3000 0.2019 0.1541 0.0125
heuristic (vol. max—>min) 0.0878  0.2447 0.1430 0.0560 -0.0140
heuristic (vol. sim.) 0.0945 0.2645 0.1403 0.0864 0.0398
heuristic (time overlap) 0.0779 0.2274 0.2179 0.1344 0.1427
tag overlap* 0.0152 0.1014 0.5471 0.5691 0.6999
GPT-40 0.0252  0.1265 0.4683 0.3584 0.5227
GPT-40 + CoT 0.0256  0.1274 0.4433 0.2687 0.4447
GPT-03-mini 0.0412  0.1549 0.4284 0.3360 0.4645
GPT-03-mini + CoT 0.0543 0.1638 0.4632 0.3531 0.5011
Meta-Llama3-70B 0.0416  0.1640 0.3828 0.3349 0.5004
Meta-Llama3-70B + CoT 0.0364 0.1612 0.3303 0.3278 0.4733
DeepSeek-V3 0.0242  0.1230 0.4974 0.3428 0.5187
DeepSeek-V3 + CoT 0.0289  0.1402 0.3963 0.3244 0.4886
DeepSeek-R1 0.0441 0.1833 0.2206 0.1137 0.1267
DeepSeek-R1 + CoT 0.0352  0.1698 0.2320 0.1420 0.0713
Qwen2-72B 0.0336  0.1488 0.4067 0.3069 0.4024
Qwen2-72B + CoT 0.0387 0.1683 0.2867 0.2385 0.3550
cross-encoder (nli-deberta-v3-base) 0.0888  0.2483 0.1466 0.0967 0.1491
Qwen1.5-4B (zero-shot) 0.1203  0.2693 0.2433 0.1691 0.1800

Qwenl.5-4B (fine-tuned, LoRA) 0.0760  0.1942 0.3592 0.3326 0.4519

Table 5: Performance on Cryptocurrency domain. Evaluation across selected metrics.
*Note: the "tag overlap" method was used as a feature in the creation of the ground-truth labels (see Section 5.2 and is therefore
not a benchmark baseline.
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Method MSE MAE  Accuracy Macro-F1 QWK

random 0.1423  0.3093 0.2016 0.1759 0.0099
heuristic (vol. max—-min) 0.1612 0.3197 0.1090 0.0490 -0.0030
heuristic (vol. sim.) 0.0885 0.2531 0.1780 0.1289 0.0941
heuristic (time overlap) 0.0877 0.2383 0.2157 0.2058 0.4190
tag overlap* 0.0229  0.1298 0.4407 0.4982 0.7932
GPT-40 0.1042  0.2558 0.1746 0.1431 0.2418
GPT-40 + CoT 0.0744  0.2209 0.2267 0.1890 0.3678
GPT-03-mini 0.0931 0.2305 0.2840 0.2383 0.4805
GPT-03-mini + CoT 0.1199 0.2654 0.2182 0.1922 0.3620
Meta-Llama3-70B 0.0772  0.2312 0.1813 0.1790 0.4399
Meta-Llama3-70B + CoT 0.0838 0.2404 0.1629 0.1523 0.3916
DeepSeek-V3 0.0884 0.2432 0.1678 0.1558 0.3438
DeepSeek-V3 + CoT 0.0909  0.2480 0.1500 0.1305 0.3026
DeepSeek-R1 0.0258 0.1307 0.4409 0.4599 0.3327
DeepSeek-R1 + CoT 0.0442  0.1625 0.3972 0.2620 0.3454
Qwen2-72B 0.0983  0.2422 0.2000 0.1751 0.2478
Qwen2-72B + CoT 0.1006  0.2476 0.1933 0.1625 0.2499
cross-encoder (nli-deberta-v3-base) 0.1779  0.3432 0.0916 0.0496 -0.0360
Qwenl.5-4B (zero-shot) 0.1463  0.3033 0.2000 0.1290 0.0018
Qwenl.5-4B (test metrics) 0.1286  0.2788 0.2850 0.1834 0.1468

Table 6: Performance on Sports domain. Evaluation across selected metrics.
*Note: the "tag overlap" method was used as a feature in the creation of the ground-truth labels (see Section 5.2 and is therefore
not a benchmark baseline.

Method MSE MAE  Accuracy Macro-F1 QWK
random 0.1268 0.2914 0.2058 0.1558 0.0077
heuristic (vol. max—min) 0.0719  0.2227 0.1940 0.0870 -0.0200
heuristic (vol. sim.) 0.0850 0.2504 0.1610 0.0835 0.0181
heuristic (time overlap) 0.0639  0.2063 0.2570 0.1906 0.1380
tag overlap* 0.0175 0.1121 0.4721 0.5775 0.6283
GPT-40 0.0219 0.1112 0.5575 0.2940 0.3522
GPT-40 + CoT 0.0346  0.1489 0.4033 0.3100 0.4149
GPT-03-mini 0.0278 0.1344 0.4548 0.2088 0.2752
GPT-03-mini + CoT 0.0231 0.1187 0.5451 0.2496 0.4183
Meta-Llama3-70B 0.0596  0.1970 0.3103 0.2468 0.3598
Meta-Llama3-70B + CoT 0.0470 0.1834 0.2660 0.2118 0.3397
DeepSeek-V3 0.0330 0.1456 0.4132 0.2953 0.4087
DeepSeek-V3 + CoT 0.0312  0.1450 0.3836 0.2930 0.4197
DeepSeek-R1 0.0441 0.1833 0.2206 0.1137 0.1267
DeepSeek-R1 + CoT 0.0220 0.1192 0.4636 0.1893 0.1715
Qwen2-72B 0.0430 0.1696 0.3233 0.2345 0.4127
Qwen2-72B + CoT 0.0383  0.1639 0.3200 0.2737 0.4104
cross-encoder (nli-deberta-v3-base) 0.0972  0.2604 0.1436 0.0688 0.1117
Qwen1.5-4B (zero-shot) 0.2099  0.3650 0.2217 0.1162 0.0458
Qwenl.5-4B (fine-tuned, LoRA) 0.0681 0.2017 0.3058 0.2401 0.3873

Table 7: Performance on Election domain. Evaluation across selected metrics.
*Note: the "tag overlap" method was used as a feature in the creation of the ground-truth labels (see Section 5.2 and is therefore
not a benchmark baseline.
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Table 8: Annotation scale with definitions and representative examples. Each bin corresponds to a level of
relevance used in rating event pairs.

Label Definition Example Event Pair
Range
0.0-0.2 Unrelated; events concern differ- Will China invade Taiwan in 2024?

ent topics, entities, or timelines.  vs.
Karine Jean-Pierre out as Press Secretary

by July 31?7
0.2-0.4 Weakly related; minimal topical ~ U.S. military action against Iran in 2024?
overlap, but no structural link. vs.
Democrats win popular vote by 4-5%?
0.4-0.6 Moderately related; shared ac- Will another candidate win NY-16 Demo-
tors, parties, or contexts. cratic Primary?
Vs.
Will a candidate from another party win
NY Senate?
0.6-0.8 Strongly related; possible causal ~ Will Trump tweet 90+ times Oct 25-Nov
or strategic link. 1?
Vs.

Will Trump win 30% of Black men?

0.8-1.0 Highly related; one event entails  Biden resign during his speech today?
the other. Vs.
Biden removed via 25th Amendment?

19



H Heuristic Selection Methods

To provide interpretable baselines for social opin-
ion correlation reasoning, we introduce a set of
heuristic scoring methods for ranking candidate
event pairs. Unlike learned models, these heuris-
tics use domain knowledge and surface-level at-
tributes to estimate correlation scores without lan-
guage understanding or reasoning. They serve as
simple, zero-shot approximations to relevance or
co-movement between social opinions.

Random We assign a uniform random score to
each candidate event. This provides a lower-bound
reference for performance and reflects the difficulty
of the task in the absence of any meaningful signal.

Volume-Based Sorting We hypothesize that
highly traded events are more likely to be central or
influential in public discourse. For each candidate,
we compute its total market trading volume (over
the active time window) and use this as a relevance
score. We experiment with two variants:

* Volume Max-to-Min: Assigns the candidate’s
normalized trading volume as its correlation
score. Events with higher volume are assumed
to be more generally relevant, independent of the
base event.

* Volume Similarity: Computes the absolute dif-
ference in trading volume between the base and
candidate events. Event pairs with more similar
volumes receive higher scores, under the assump-
tion that similarly salient events may co-occur
in public discourse or exhibit social opinion co-
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activation.

Temporal Overlap We compute the degree of
overlap in time between the base and candidate
event windows. Events that occur in similar time-
frames may be causally or contextually linked. The
score is computed as the ratio of overlapping dura-
tion to union duration.

Cross-Encoder Baseline We include a
strong neural retrieval baseline using the
nli-deberta-v3-base cross-encoder. It jointly
encodes event pairs and outputs a real-valued rele-
vance score. Although trained on general-purpose
sentence similarity or natural language inference
tasks, it often captures surface-level lexical or
semantic overlap, making it a competitive 0-hop
semantic baseline.

I Human Evaluation of Heuristic Scoring

I.1 Setup

Objective and Sampling. To assess whether our
heuristic scoring function aligns with human intu-
ition, we conducted an annotation study over 200
event pairs. These pairs were drawn evenly across
five correlation levels (very weak to very strong)
according to the algorithmic relevance scores de-
scribed in Section §4.2. This stratified sampling
ensured that the full range of social opinion correla-
tion strengths was represented, enabling consistent
evaluation across relevance levels.

Annotators and Conditions. Three annotators,
who were NLP researchers involved in the project,
participated in the study. While familiar with the
modeling setup, they lacked domain-specific exper-
tise in forecasting or geopolitical reasoning. An-
notations were conducted non-blind: annotators
shared the same rubric and examples to guide their
judgments

1.2 Annotation Protocol

Rubric Development and Scoring Process.
Prior to annotation, the three annotators collab-
oratively developed a shared rubric to define five
levels of social opinion correlation, ranging from
unrelated to highly related. This rubric was itera-
tively refined through internal calibration rounds,
ensuring that all annotators applied consistent se-
mantic and causal reasoning. During annotation,
each annotator independently rated all 200 event
pairs on a continuous scale from 0.0 to 1.0 using
the agreed rubric. Table 8 summarizes the scoring



Table 9: Inter-annotator agreement. Pearson correla-
tion coefficients between annotators.

Annotator A Annotator B Annotator C

Annotator A 1.000 0.840 0.739
Annotator B 0.840 1.000 0.794
Annotator C 0.739 0.794 1.000

bins and includes representative examples for each
level.

Label Aggregation and Annotation Conditions.
Although annotators shared a rubric, the annota-
tion process itself was conducted independently
without real-time coordination. Final labels were
aggregated by majority vote; in cases of complete
disagreement, we averaged the three scores. To
prevent bias, annotators were shown only the event
texts, without access to social opinion trajectories,
model predictions, or algorithmic scores. This en-
sured that all judgments reflected semantic reason-
ing alone.

Annotator Agreement. We evaluate inter-
annotator reliability using both pairwise Pearson
correlations and intra-class correlation (ICC).
As shown in Table 9, pairwise Pearson scores
range from 0.739 to 0.840, indicating strong
linear consistency among annotators. The highest
alignment is observed between Annotators A and
B (0.840), while A and C show slightly lower but
still robust agreement (0.739). To complement this,
we compute ICC(2,1) under a two-way random
effects model, yielding a value of 0.777. This
reflects substantial agreement across annotators
and confirms the reliability of the human labels as
a benchmark for model alignment.

L.3 Alignment with Heuristic Model

To measure how well the heuristic score S(A, B)
matches human judgment, we compute the Pear-
son correlation between model predictions and the
aggregated human labels. The resulting correlation
of p = 0.697 (Table 10) indicates strong alignment
between the scoring function and human reasoning.

Table 10: Model-human alignment. Pearson correla-
tion between the heuristic score and human annotations.

Method
Heuristic score S(A, B)

Pearson Correlation

0.697
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J Detailed Performance Degradation
After Cutoff

K Demo Interface Overview

We build a web-based demo to showcase how our
system connects real-time news and prediction mar-
ket data. The interface allows users to explore
forecastable events, understand model-generated
reasoning, and vote on likely outcomes. Below, we
walk through its key components.

Main Event Grid. Upon entering the demo (Fig-
ure 7), users see a grid of active prediction ques-
tions. Each card displays an event (e.g., “Will X
and Truth Social merger be announced before Au-
gust?”’) along with real-time probability estimates
for each outcome (Yes/No), sourced from Poly-
market. Users can filter events by domain (e.g.,
politics, crypto) via the dropdown menu. Clicking
on the “News” tab navigates to a dedicated news
feed page. Selecting an individual event card leads
to a detailed view for reasoning and voting.

News Integration. The “News” section (Fig-
ure 8) presents a chronological list of recent head-
lines. Clicking on any headline redirects users to
the original article. Users can also expand or col-
lapse a card by clicking the dropdown triangle on
the right. When expanded, the card reveals any pre-
diction events automatically identified as seman-
tically or causally related to the article, bridging
news and social opinion markets.

Detailed Event View. When clicking on a grid
cell, users are taken to a dedicated page for that
prediction question (Figure 9). Here, they can se-
lect an outcome and choose from a list of candidate
reasons generated by an LLM. These explanations
help users interpret possible causal mechanisms.
The right panel shows a time-series chart visualiz-
ing real-time market probabilities for each option.
After selecting both an outcome and a reason, users
can vote to register their social opinion.



Performance Change After Knowledge Cutoff
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Figure 6: Performance change after knowledge cutoff across domains and models. Bars show the relative change
in evaluation metrics on post-cutoff event pairs, compared to pre-cutoff ones. For metrics like MSE and MAE,
values are sign-inverted to ensure a consistent interpretation, where negative values indicate degraded performance.
GPT-40 shows a substantial decline across most metrics in the election domain, while performance remains more
stable in the politics domain.

Clicking “News" navigates
to a page displaying
Tecent headlines.

Openmarket |T|_>

Filter by Tag: | Al v

The “Filter by Tag" dropdown
f——————————p lets users sort events by
domain, such as politics

Clicking on any event card
opens a detailed view.

Will Trump repeal Presidential term limits?

0.5%

No 99.5%

Bird flu pandemic before August 2025?

Will GPT-5 be released by December 31?

93.7%

No 6.3%

Figure 7:
by topic.

X and Truth Social merger announced before
August?

Yes 0.4%

No 99.6%
Doge ETF approved by July 31?

Yes 2.08'

No 97.95

Each grid cell corresponds to one
prediction event with real-time
probabilities based on data from

Polymarket.
Litecoin ETF approved by July 31?

75%

Mo 92.5%
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Will Trump impose large tariffs in his first 6
months?

96.3%

Will federal spending decrease by $500-
750b between Q4 2024 and Q2 20257

No

Main interface with real-time prediction events. Cards show current market probabilities and are filterable



Openmarket

Latest News

U.S. Wholesale Prices Were Flat in June

2025/7/17 02:06:00)

Related Market Events

Clicking the news headline redirects No related market events found

users to the original news source. Users can click the dropdown triangle to

expand or collapse each news card. When
expanded, it reveals any related prediction
New York Mayor Eric Adams Led Criminal Enterprise at NYPD, Former Top Cop Alleges market events linked to tbe article.

2025717 01:58:00)

Canada Imposes Limits on Steel Imports From All Countries Except U.S., Mexico .

2025/7/17 01:51:00

‘A Return to Self' Review: At Home in the World

2025/7/17 01:46:00)

Crisis Spirals in Syria With Israeli Strikes on Damascus .

2025/7/17 01:37:00)

Figure 8: News page interface. Each news item links to the source and may surface relevant market events.

Openmarket  tews After selecting both an outcome and
a i ;
Will no Fed rate cuts happen in 2025? Vote Option submit their vote by clicking the

“Vote" button.

Yes 16.5%
Selected: Yes

Alist of candidate reasons is generated by an Chance: 16.5%
No LLM to explain possible outcomes. Users can 83.5%
select the one they find most convincing.

Select your reason:

If inflation remains above the Federal Reserve's target, it is less likely they will
cut rates in 2025, as they prioritize controlling inflation over stimulating m Estraied  Bath
growth. A strong labor market and steady economic growth could deter the

Fed from implementing rate cuts, as they might not see a need to stimulate

an already healthy economy. 100

1votes|

764
The Federal Reserve's cautious approach to rate adjustments suggests they

might hold rates steady unless there is a significant economic downturn. In
the absence of unexpected economic shocks, the Fed might continue with
stable rates to maintain economic stability. o

1votes)

Al
Market expectations can influence Fed decisions, and if there is a consensus 25 1 ] o LT‘

that no cuts are needed, the Fed may align with these expectations unless W ’. " A W’
there are compelling reasons to do otherwise. Historically, the Fed tends to T RLE h‘ et ! \ '\.’
be conservative in altering rates, especially if they have recently increased g™ !

them, preferring to observe the long-term effects before considering cuts. 0 |
4—/ 2025-03-24T11:00:06Z 2025-07-06T23:50:07Z

- No

A real-time time series chart shows the market's
probability estimates for each outcome

Figure 9: Detailed view of a prediction event. Users select an outcome and reason, then submit their vote.
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